Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Numerical evaluation of diffraction integrals for apertures of complicated shape

Not Accessible

Your library or personal account may give you access

Abstract

An algorithm for fast numerical integration of near-field scalar diffraction formulas is presented, based on the local approximation of the integrand of the diffraction equation by a variant of the Fresnel kernel. The two-dimensional local propagation integral is solved analytically for an integration domain enclosed between two mutually perpendicular line segments and a parabolic arc. We show that, by combining rectangular and arched elements, one can achieve accurate computation of the field diffracted at complicated aperture shapes without having to resort to time-consuming numerical quadrature techniques. The numerical accuracy and the computational speed of the algorithm are assessed and compared with the performance of the linear-phase approximation method developed by Hopkins and Yzuel [ Opt. Acta 17, 157 ( 1970)].

© 1994 Optical Society of America

Full Article  |  PDF Article
More Like This
Calculation of diffraction effects on the average phase of an optical field

Miltiadis V. Papalexandris and David C. Redding
J. Opt. Soc. Am. A 17(10) 1763-1772 (2000)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (63)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.