Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Lightpath QoT computation in optical networks assisted by transfer learning

Not Accessible

Your library or personal account may give you access

Abstract

Precise computation of the quality of transmission (QoT) of lightpaths (LPs) in transparent optical networks has techno-economic importance for any network operator. The QoT metric of LPs is defined by the generalized signal-to-noise ratio (GSNR), which includes the effects of both amplified spontaneous emission noise and nonlinear interference accumulation. Generally, the physical layer of a network is characterized by nominal values provided by vendors for the operational parameters of each network element (NE). Typically, NEs suffer a variation in the working point that implies an uncertainty from the nominal value, which creates uncertainty in the GSNR computation and requires the deployment of a system margin. We propose the use of a machine learning agent trained on a dataset from an in-service network to reduce the uncertainty in the GSNR computation on an unused sister network, based on the same optical transport equipment and thus following the transfer learning paradigm. We synthetically generate datasets for both networks using the open-source library GNPy and show how the proposed deep neural network based on TensorFlow may substantially reduce the GSNR uncertainty and, consequently, the needed margin. We also present a statistical analysis of the observed GSNR fluctuations, showing that the per-wavelength GSNR distribution is always well-approximated as Gaussian, enabling a statistical closed-form approach to the margin setting.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
Assessment of cross-train machine learning techniques for QoT-estimation in agnostic optical networks

Ihtesham Khan, Muhammad Bilal, and Vittorio Curri
OSA Continuum 3(10) 2690-2706 (2020)

Machine learning regression for QoT estimation of unestablished lightpaths

Memedhe Ibrahimi, Hatef Abdollahi, Cristina Rottondi, Alessandro Giusti, Alessio Ferrari, Vittorio Curri, and Massimo Tornatore
J. Opt. Commun. Netw. 13(4) B92-B101 (2021)

Assessment on the in-field lightpath QoT computation including connector loss uncertainties

Alessio Ferrari, Karthikeyan Balasubramanian, Mark Filer, Yawei Yin, Esther Le Rouzic, Jan Kundrát, Gert Grammel, Gabriele Galimberti, and Vittorio Curri
J. Opt. Commun. Netw. 13(2) A156-A164 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.