Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Rearrangeable W-S-W Elastic Optical Networks Generated by Graph Approaches

Not Accessible

Your library or personal account may give you access

Abstract

In elastic optical networks, a connection uses different spectrum widths that spread over adjacent frequency slot units (FSUs) to improve utilization efficiency. A three-stage wavelength-space-wavelength (W-S-W) optical node architecture for elastic optical networks employs wavelength switching in the first and third stages and space switching in the second stage. This paper considers two W-S-W architectures, called WSW1 and WSW2 networks. In an earlier study, a matrix decomposition approach was used to derive a condition that was sufficient for rearrangeable nonblocking (RNB), but only for a WSW1 network with a limited number of connection rates. In this paper, instead of using a matrix decomposition approach, we use a graph approach to derive the same result. Furthermore, we adopt different graph approaches to derive two sufficient conditions, which benefit limited connection rates and limited input/output fibers of an RNB WSW1 (or WSW2) network. Specifically, the former is better than the latter if the number of connection rates is less than the minimum ceiling value of half the number of 1) input/output switches and 2) FSUs in each input and output fiber, and vice versa if the number of input/output switches is less than the minimum value of 1) twice the maximum FSUs occupied by a single connection and 2) FSUs in each input and output fiber. Note that limited input/output switches lead to limited input/output fibers. The graph approaches proposed in this paper can be applied to various other elastic optical networks for further study.

© 2018 Optical Society of America

Full Article  |  PDF Article

Corrections

Bey-Chi Lin, "Rearrangeable W-S-W Elastic Optical Networks Generated by Graph Approaches: erratum," J. Opt. Commun. Netw. 11, 282-284 (2019)
https://opg.optica.org/jocn/abstract.cfm?uri=jocn-11-6-282

2 July 2018: A typographical correction was made to page 679.

10 July 2018: A correction was made to the acknowledgment section.


More Like This
Rearrangeable W-S-W Elastic Optical Networks Generated by Graph Approaches: erratum

Bey-Chi Lin
J. Opt. Commun. Netw. 11(6) 282-284 (2019)

Strict-Sense Nonblocking Space-Wavelength-Space Switching Fabrics for Elastic Optical Network Nodes

Grzegorz Danilewicz, Wojciech Kabaciński, and Remigiusz Rajewski
J. Opt. Commun. Netw. 8(10) 745-756 (2016)

Joint Banding-Node Placement and Resource Allocation for Multigranular Elastic Optical Networks

Jingxin Wu, Maotong Xu, Suresh Subramaniam, and Hiroshi Hasegawa
J. Opt. Commun. Netw. 10(8) C27-C38 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (11)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.