Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 36,
  • Issue 17,
  • pp. 3645-3651
  • (2018)

Design and Simulation of a Piezotronic GaN-Based Pulsed THz Emitter

Not Accessible

Your library or personal account may give you access

Abstract

A piezotronic pulsed GaN-based photoconductive TeraHertz (THz) emitter is proposed and simulated for the first time. In this paper, we benefit from high break down-voltage, thermal conductivity, and saturation velocity of GaN, to design a pulsed antenna-less THz emitter. The proposed emitter consists of asymmetric metal-semiconductor-metal structure. Moreover, strong coupling of semiconducting/piezoelectric properties in GaN, allows modulation of the dissimilar Schottky barriers, leading to tunable THz output power and bandwidth. Our simulation results demonstrate that applying an external strain of about 4% results in 26% enhancement in the radiated THz power, while output bandwidth is improved about 4.2%. The proposed structure is promising for emerging reconfigurable THz emitters, capable of being tunable by external strain as a controlling gate.

© 2018 IEEE

PDF Article
More Like This
Bias-free and antenna-coupled CW terahertz array emitter with anomalous Schottky barriers

Mohammad Javad Mohammad-Zamani, Morteza Fathipour, Mohammad Neshat, Fakhroddin Nazari, and Mahdi Ghaemi
J. Opt. Soc. Am. B 34(9) 1771-1779 (2017)

Unbiased continuous wave terahertz photomixer emitters with dis-similar Schottky barriers

Mohammad Javad Mohammad-Zamani, Mohammad Kazem Moravvej-Farshi, and Mohammad Neshat
Opt. Express 23(15) 19129-19141 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved