Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 36,
  • Issue 11,
  • pp. 2259-2270
  • (2018)

Tapered Multi-Beam Arrays via an Optically Power-Efficient Photonic Architecture

Not Accessible

Your library or personal account may give you access

Abstract

A novel photonic beam-space beam-former concept is reviewed and an additional theory addressing precise sampling of desired beam locations for linear arrays is presented. A new, power efficient, method of apodizing an input array's beam pattern via a weighted distribution of the master feed laser to each RF-to-optical up-conversion stage behind the array elements is then presented along with results from several apodization experiments. The experimental results are shown to produce effective, low-sidelobe responses, while also reducing the required prime input power to the system until an artificial side-lobe floor is reached. The root cause of the side-lobe floor is discovered to be due to phase and amplitude errors introduced within the photonic components currently used. Finally, key findings and design considerations are presented with respect to the usage of photonic beam-space sampling on large arrays and several suggestions for performance improvement in future system designs are discussed.

© 2018 IEEE

PDF Article
More Like This
Developing an integrated photonic system with a simple beamforming architecture for phased-array antennas

Weimin Zhou, Michael Stead, Steven Weiss, Olukayode Okusaga, Lingjun Jiang, Stephen Anderson, and Z. Rena Huang
Appl. Opt. 56(3) B5-B13 (2017)

Acousto-optic liquid-crystal analog beam former for phased-array antennas

Nabeel A. Riza
Appl. Opt. 33(17) 3712-3724 (1994)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.