Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 33,
  • Issue 11,
  • pp. 2189-2198
  • (2015)

Phase Regeneration of a BPSK Data Signal Using a Lithium Niobate Phase Modulator

Not Accessible

Your library or personal account may give you access

Abstract

We propose a scheme for phase regeneration of an optical binary phase shift keying (BPSK) data signal using a Lithium Niobate (LiNbO3) phase modulator. The scheme is based on heterodyne detection of the BPSK data signal with a continuous wave local oscillator (CW-LO). Carrier recovery is then achieved in the electrical domain using a ×2 frequency-multiplier and a narrow-band filtering scheme. Subsequently, a superposition of the recovered carrier and the heterodyne detected data signal is used to modulate the CW-LO in a LiNbO3 phase modulator. The result is a parametric mixing process in the optical domain, leading to a phase-regenerated BPSK data signal by the coherent superposition with a phase-inverted copy. The proposed scheme constitutes a compact and stable setup, where active phase-stabilization of the electrical data- and carrier-paths can potentially be avoided. An analytical derivation of the working principle is provided, using Jacobi–Anger expansions to describe the phase-modulation. A proof-of-principle experiment is carried out, demonstrating regeneration of a 10 Gb/s NRZ-BPSK data signal degraded by a 5-GHz sinusoidal phase-noise tone. In the proof-of-principle demonstration, the decorrelated data- and LO-carriers are derived from the same CW source. A preliminary test with separate CW sources for data and LO, but without the required electrical narrow-band carrier filtering, is also included. Finally, numerical simulations of the regenerator performance in the presence of wideband phase- and amplitude-noise are performed.

© 2015 IEEE

PDF Article
More Like This
Novel real-time homodyne coherent receiver using a feed-forward based carrier extraction scheme for phase modulated signals

Selwan K. Ibrahim, Stylianos Sygletos, Ruwan Weerasuriya, and Andrew D. Ellis
Opt. Express 19(9) 8320-8326 (2011)

Phase regeneration of phase encoded signals by hybrid optical phase squeezer

Takayuki Kurosu, Mingyi Gao, Karen Solis-Trapala, and Shu Namiki
Opt. Express 22(10) 12177-12188 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.