Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 23,
  • Issue 8,
  • pp. 2427-
  • (2005)

Bidirectional Higher Order Cascaded Raman Amplification Benefits for 10-Gb/s WDM Unrepeated Transmission Systems

Not Accessible

Your library or personal account may give you access

Abstract

Benefits provided by higher order bidirectional Raman pumping schemes in 10-Gb/s unrepeated wavelength-division-multiplexing transmission systems are experimentally quantified in terms of BER performances at 10 Gb/s. By keeping under control double-Rayleigh-scattering-noise-induced transmission penalties, which can degrade system performance at very high ON-OFF Raman gain, as well as nonlinear propagation effects such as Brillouin scattering, self-and cross-phase modulations, four-wave-mixing, and Raman-induced crosstalks, we show a total unrepeated system reach enhancement up to 3.5 dB with respect to first-order bidirectional pumping. As confirmed by theory, the maximum reach enhancement is mainly limited by pump-to-signal relative intensity noise transfer induced by higher order copumping.

© 2005 IEEE

PDF Article
More Like This
Full characterization of modern transmission fibers for Raman amplified-based communication systems

Shifeng Jiang, Bruno Bristiel, Yves Jaouën, Philippe Gallion, Erwan Pincemin, and Sylvain Capouilliet
Opt. Express 15(8) 4883-4892 (2007)

Noise and transmission performance improvement of broadband distributed Raman amplifier using bidirectional Raman pumping with dual order co-pumps

M. A. Iqbal, M. Tan, L. Krzczanowicz, A. E. El-Taher, W. Forysiak, J. D. Ania-Castañón, and P. Harper
Opt. Express 25(22) 27533-27542 (2017)

Transmission performance improvement using random DFB laser based Raman amplification and bidirectional second-order pumping

M. Tan, P. Rosa, S. T. Le, Md. A. Iqbal, I. D. Phillips, and P. Harper
Opt. Express 24(3) 2215-2221 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.