Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 71,
  • Issue 9,
  • pp. 2177-2186
  • (2017)

Preliminary Clinical Validation of a Differential Correction Method for Improving Measurement Accuracy in Noninvasive Measurement of Blood Glucose Using Near-Infrared Spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

One of the main challenges in the noninvasive sensing of blood glucose by near-infrared (NIR) spectroscopy is the background variations from light source drift, sweating, and temperature change at the human–machine interface. In this paper, a differential correction method based on the spectra from the floating-reference position and measuring position is proposed to eliminate these spectral variations from background interferences. Its effectiveness was validated by in vitro and in vivo experiments in which the diffuse reflectance of intralipid solutions and human skin was collected at the source distances of 0.6 mm and 2 mm by the custom-built system with six super-luminescent emitting diodes (SLEDs) light source. The results showed that, for the in vitro experiments of intralipid solutions, the coefficients of variations of diffuse reflectance decreased by 20.5% under all the six wavelengths after differential correction. For the in vivo experiments of oral glucose tolerance tests (OGTTs), partial least squares (PLS) regression models between glucose concentrations and the diffuse reflectance from palm skin were built, and the root mean square error of cross validation (RMSECV) decreased by 38.0% on average after the differential correction. Further, the spectra of the oral water tolerance tests (OWTTs) were collected for correlation with glucose concentration in OGTTs, and their correlation coefficients (R) decreased by 35.0% on average after the differential correction. Therefore, this differential correction method based on the spectra from the floating-reference position and measuring position can weaken the influence of background variations on the NIR spectroscopy and has promising potential in in vivo detection, especially for noninvasive blood glucose measurement.

© 2017 The Author(s)

PDF Article
More Like This
High-accuracy noninvasive continuous glucose monitoring using OCT angiography-purified blood scattering signals in human skin

Mengqin Gao, Dayou Guo, Jiahao Wang, Yizhou Tan, Kaiyuan Liu, Lei Gao, Yulei Zhang, Zhihua Ding, Ying Gu, and Peng Li
Biomed. Opt. Express 15(2) 991-1003 (2024)

Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry

Xinxin Guo, Andreas Mandelis, and Bernard Zinman
Biomed. Opt. Express 3(11) 3012-3021 (2012)

Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient

J. T. Bruulsema, J. E. Hayward, T. J. Farrell, M. S. Patterson, L. Heinemann, M. Berger, T. Koschinsky, J. Sandahl-Christiansen, H. Orskov, M. Essenpreis, G. Schmelzeisen-Redeker, and D. Böcker
Opt. Lett. 22(3) 190-192 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.