Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 66,
  • Issue 4,
  • pp. 451-457
  • (2012)

Transmission Fourier Transform Raman Spectroscopy of Pharmaceutical Tablet Cores

Not Accessible

Your library or personal account may give you access

Abstract

<b>Transmission Fourier transform (FT) Raman spectroscopy of pharmaceutical tablet cores is demonstrated using traditional, unmodified commercial instrumentation. The benefits of improved precision over backscattering Raman spectroscopy due to increased sample volume are demonstrated. Self-absorption effects on analyte band ratios and sample probe volume are apparent, however. A survey of near-infrared (NIR) absorption spectra in the FT-Raman spectral range (approximately 0 to 3500 wavenumber shift from 1064 nm, or 1064 to 1700 nm) of molecules with a wide range of NIR-active functional groups shows that although absorption at the laser wavelength (1064 nm) is relatively small, some regions of the Raman spectrum coincide with NIR absorbances of 0.5 per cm or greater. Fortunately, the pharmaceutically important regions of the Raman shift spectrum from 0 to 600 cm<sup>−1</sup> and from 1400 to 1900 cm<sup>−1</sup> exhibit low self-absorption for most organic materials. A statistical analysis of transmission FT-Raman noise in spectra collected from different regions of a pharmaceutical tablet provides insight into both spectral distortion and reduced sampling volume caused by self-absorption.</b>

PDF Article
More Like This
Density-dependent determination of scattering properties of pharmaceutical tablets using coherent backscattering spectroscopy

Annika Häffner, Philipp Krauter, and Alwin Kienle
Opt. Express 26(16) 19964-19971 (2018)

Raman spectroscopy of gases with a Fourier transform spectrometer: the spectrum of D2

Donald E. Jennings, A. Weber, and J. W. Brault
Appl. Opt. 25(2) 284-290 (1986)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.