Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 66,
  • Issue 11,
  • pp. 1311-1319
  • (2012)

Rapid, Nondestructive Estimation of Surface Polymer Layer Thickness Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy and Synthetic Spectra Derived from Optical Principles

Not Accessible

Your library or personal account may give you access

Abstract

We have developed a rapid, nondestructive analytical method that estimates the thickness of a surface polymer layer with high precision but unknown accuracy using a single attenuated total reflection Fourier transform infrared (ATR FT-IR) measurement. Because the method is rapid, nondestructive, and requires no sample preparation, it is ideal as a process analytical technique. Prior to implementation, the ATR FT-IR spectrum of the substrate layer pure component and the ATR FT-IR and real refractive index spectra of the surface layer pure component must be known. From these three input spectra a synthetic mid-infrared spectral matrix of surface layers 0 nm to 10 000 nm thick on substrate is created de novo. A minimum statistical distance match between a process sample's ATR FT-IR spectrum and the synthetic spectral matrix provides the thickness of that sample. We show that this method can be used to successfully estimate the thickness of polysulfobetaine surface modification, a hydrated polymeric surface layer covalently bonded onto a polyetherurethane substrate. A database of 1850 sample spectra was examined. Spectrochemical matrix-effect unknowns, such as the nonuniform and molecularly novel polysulfobetaine-polyetherurethane interface, were found to be minimal. A partial least squares regression analysis of the database spectra versus their thicknesses as calculated by the method described yielded an estimate of precision of ±52 nm.

PDF Article
More Like This
Use of attenuated total reflectance Fourier transform infrared spectroscopy to monitor the development of lipid aggregate structures

Mateo R. Hernandez, Elyse N. Towns, Terry C. Ng, Brian C. Walsh, Richard Osibanjo, Atul N. Parikh, and Donald P. Land
Appl. Opt. 51(15) 2842-2846 (2012)

Moldable optical element: a new tool to obtain the infrared attenuated-total-reflection spectrum of a rough surface

Alexandre M. Kondyrev and Alexandre E. Tshmel
Appl. Opt. 34(22) 4989-4992 (1995)

Dispersion effects on infrared spectra in attenuated total reflection

Rabah Belali, Jean-Marie Vigoureux, and Joseph Morvan
J. Opt. Soc. Am. B 12(12) 2377-2381 (1995)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved