Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 63,
  • Issue 2,
  • pp. 153-163
  • (2009)

Methods for Kinetic Modeling of Temporally Resolved Hyperspectral Confocal Fluorescence Images

Not Accessible

Your library or personal account may give you access

Abstract

Elucidating kinetic information (rate constants) from temporally resolved hyperspectral confocal fluorescence images offers some very important opportunities for the interpretation of spatially resolved hyperspectral confocal fluorescence images but also presents significant challenges, these being (1) the massive amount of data contained in a series of time-resolved spectral images (one time course of spectral data for each pixel) and (2) unknown concentrations of the reactants and products at time = 0, a necessary precondition normally required by traditional kinetic fitting approaches. This paper describes two methods for solving these problems: direct nonlinear (DNL) estimation of all parameters and separable least squares (SLS). The DNL method can be applied to reactions of any rate law, while the SLS method is restricted to first-order reactions. In SLS, the inherently linear and nonlinear parameters of first-order reactions are solved in separate linear and nonlinear steps, respectively. The new methods are demonstrated using simulated data sets and an experimental data set involving photobleaching of several fluorophores. This work demonstrates that both DNL and SLS hard-modeling methods applied to the kinetic modeling of temporally resolved hyperspectral images can outperform traditional soft-modeling and hard/soft-modeling methods which use multivariate curve resolution–alternating least squares (MCRALS) methods. In addition, the SLS method is much faster and is able to analyze much larger data sets than the DNL method.

PDF Article
More Like This
Confocal hyperspectral microscopic imager for the detection and classification of individual microalgae

Jing Luo, Haodong Zhang, Erik Forsberg, Saimei Hou, Shuo Li, Zhanpeng Xu, Xiang Chen, Xiaohong Sun, and Sailing He
Opt. Express 29(23) 37281-37301 (2021)

Deep learning-enhanced snapshot hyperspectral confocal microscopy imaging system

Shuai Liu, Wenzhen Zou, Hao Sha, Xiaochen Feng, Bin Chen, Jian Zhang, Sanyang Han, Xiu Li, and Yongbing Zhang
Opt. Express 32(8) 13918-13931 (2024)

Hyperspectral confocal microscope

Michael B. Sinclair, David M. Haaland, Jerilyn A. Timlin, and Howland D. T. Jones
Appl. Opt. 45(24) 6283-6291 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.