Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 62,
  • Issue 5,
  • pp. 525-535
  • (2008)

Attenuated Total Reflection Fourier Transform Infrared Spectroscopy Analysis of Human Hair Fiber Structure

Not Accessible

Your library or personal account may give you access

Abstract

The structure of human hair was studied by attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy. The use of Ge, ZnSe, and Si internal reflection elements, various incident light angles, and difference spectra allowed detailed analysis of the cuticle, cortex, and cuticle–cortex intercellular regions without physically or mechanically removing the cuticle of the hair fiber. The ATR-FT-IR data showed the cuticle to be composed of protein having predominately beta-sheet and disorder and beta-turn configurations. In contrast, the cortex spectra showed alpha-helical structures due to the presence of intermediate filaments of alpha keratin plus beta-sheet, beta-turn and disorder structures. In the cuticle–cortex interface region the protein structures were primarily disorder and beta-turn with small amounts of beta-sheet configurations. The spectral analyses are consistent with the general information on hair fiber structure proposed in the literature.

PDF Article
More Like This
Use of attenuated total reflectance Fourier transform infrared spectroscopy to monitor the development of lipid aggregate structures

Mateo R. Hernandez, Elyse N. Towns, Terry C. Ng, Brian C. Walsh, Richard Osibanjo, Atul N. Parikh, and Donald P. Land
Appl. Opt. 51(15) 2842-2846 (2012)

Effective absorption coefficient and effective thickness in attenuated total reflection spectroscopy

A. Mendoza-Galván, J. G. Méndez-Lara, R. A. Mauricio-Sánchez, K. Järrendahl, and H. Arwin
Opt. Lett. 46(4) 872-875 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved