Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 61,
  • Issue 1,
  • pp. 25-31
  • (2007)

Development of a Surface-Enhanced Raman Technique for Biomarker Studies on Mars

Not Accessible

Your library or personal account may give you access

Abstract

Raman spectroscopy has been identified as a potentially useful tool to collect evidence of past or present life on extraterrestrial bodies. However, it is limited by its inherently low signal strength. In this investigation, laboratory tests were conducted using surface-enhanced Raman spectroscopy (SERS) in an "inverted" mode to detect the presence of organic compounds that may be similar to possible biomarkers present on Mars. SERS was used to overcome the inherently low signal intensity of Raman spectroscopy and was an effective method for detecting small concentrations of organic compounds on a number of surfaces. For small organic molecules, dissolution of the molecule to be analyzed in a suitable solvent and depositing it on a prepared SERS substrate for analysis is possible. However, for larger molecules, an "inverted" SERS (iSERS) technique was shown to be effective. In iSERS, nanoparticles of silver or gold were deposited on the mineral substrate/organic compound to be analyzed. Benzotriazole, benzoic acid, and phthalic acid were used as test organic analogs and the iSERS technique was able to detect femtomole levels of the analytes. The interference from various mineral substrates was also examined. Different methods of depositing silver particles were evaluated, including ion beam-assisted vapor deposition and deposition from aqueous colloidal suspensions.

PDF Article
More Like This
Detection of trace organics in Martian soil analogs using fluorescence-free surface enhanced 1064-nm Raman Spectroscopy

Suning Tang, Bin Chen, Christopher P. McKay, Rafael Navarro-Gonzálezv, and Alan X. Wang
Opt. Express 24(19) 22104-22109 (2016)

Surface-enhanced Raman-scattering fiber probe fabricated by femtosecond laser

Xinwei Lan, Yukun Han, Tao Wei, Yinan Zhang, Lan Jiang, Hai-Lung Tsai, and Hai Xiao
Opt. Lett. 34(15) 2285-2287 (2009)

Substrate-based platform for boosting the surface-enhanced Raman of plasmonic nanoparticles

Qiao Min, Yuanjie Pang, Daniel J. Collins, Nikita A. Kuklev, Kristy Gottselig, David W. Steuerman, and Reuven Gordon
Opt. Express 19(2) 1648-1655 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.