Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 49,
  • Issue 5,
  • pp. 586-592
  • (1995)

Remote Fiber-Optic Raman Analysis of Xylene Isomers in Mock Petroleum Fuels Using a Low-Cost Dispersive Instrument and Partial Least-Squares Regression Analysis

Not Accessible

Your library or personal account may give you access

Abstract

We report the use of a low-cost dispersive Raman instrument with charge-coupled-device (CCD) detection, near-infrared (near-IR) diode laser excitation, and remote fiber-optic sampling to analyze mock petroleum samples which contain high benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations. Partial least-squares regression (PLSR) analysis is used to correlate the individual xylene isomer concentrations to the Raman spectral signal without the use of an internal standard. The resulting PLSR model is used to predict the concentration of individual xylene isomers, and it is found that, at a 95% confidence level, samples containing between ~1.5 and 15% xylene isomer can be predicted to better than ±0.1% for <i>meta</i>- and <i>para</i>-xylene, and to ±0.15% for <i>ortho</i>-xylene. The use of PLS model leverage plots provides a facile statistical method by which to identify Raman spectra which involve diode laser mode hops or significant fiber backscatter.

PDF Article
More Like This
Laser-based selective BTEX sensing using deep neural networks

Mhanna Mhanna, Mohamed Sy, Ayman Arfaj, Jose Llamas, and Aamir Farooq
Opt. Lett. 47(13) 3247-3250 (2022)

Deep neural networks for simultaneous BTEX sensing at high temperatures

Mhanna Mhanna, Mohamed Sy, Ali Elkhazraji, and Aamir Farooq
Opt. Express 30(21) 38550-38563 (2022)

Partial least squares regression calculation for quantitative analysis of metals submerged in water measured using laser-induced breakdown spectroscopy

Tomoko Takahashi, Blair Thornton, Takumi Sato, Toshihiko Ohki, Koichi Ohki, and Tetsuo Sakka
Appl. Opt. 57(20) 5872-5883 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.