Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Applied Spectroscopy
  • Vol. 40,
  • Issue 7,
  • pp. 978-991
  • (1986)

Micro-Diffuse Reflectance and Matrix Isolation Fourier Transform Infrared Techniques for the Identification of Tetrachlorodibenzodioxins

Not Accessible

Your library or personal account may give you access

Abstract

Micro-diffuse reflectance Fourier transform infrared (DRIFT) and matrix isolation (MI) Fourier transform infrared spectra of the 22 tetrachlorodibenzodioxin (TCDD) isomers have been recorded. The DRIFT and MI techniques required about four minutes and one-half minute, respectively, of signal averaging to produce high signal-to-noise (S/N) spectra on low-nanogram-level samples. Spectral subtraction was employed to remove DRIFT solvent impurity interferences. The validity of the DRIFT subtraction technique was demonstrated by comparison of the corrected DRIFT, with the chromatographically pure, MI spectra. The reproducibility of DRIFT frequencies and intensities was tested by comparison of the 1,3,7,8-TCDD spectra from samples independently prepared by two analysts. The MI technique successfully identified 2,3,7,8 in environmental samples. MI spectral subtraction was applied to one sample to remove a coeluting impurity. The DRIFT and MI spectral techniques, used in conjunction with modern chromatographic separation and spectral subtraction, are very promising for the on-line or off-line differentiation of low-level toxic isomeric compounds.

PDF Article
More Like This
Fourier transform infrared spectroscopy: recent developments

Peter R. Griffiths
Appl. Opt. 17(9) 1315-1317 (1978)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.