Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Development of advanced machine learning models for analysis of plutonium surrogate optical emission spectra

Abstract

This work investigates and applies machine learning paradigms seldom seen in analytical spectroscopy for quantification of gallium in cerium matrices via processing of laser-plasma spectra. Ensemble regressions, support vector machine regressions, Gaussian kernel regressions, and artificial neural network techniques are trained and tested on cerium-gallium pellet spectra. A thorough hyperparameter optimization experiment is conducted initially to determine the best design features for each model. The optimized models are evaluated for sensitivity and precision using the limit of detection (LoD) and root mean-squared error of prediction (RMSEP) metrics, respectively. Gaussian kernel regression yields the superlative predictive model with an RMSEP of 0.33% and an LoD of 0.015% for quantification of Ga in a Ce matrix. This study concludes that these machine learning methods could yield robust prediction models for rapid quality control analysis of plutonium alloys.

© 2022 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Machine learning in analytical spectroscopy for nuclear diagnostics [Invited]

Ashwin P. Rao, Phillip R. Jenkins, Ryan E. Pinson, John D. Auxier II, Michael B. Shattan, and Anil K. Patnaik
Appl. Opt. 62(6) A83-A109 (2023)

Quantitative analysis of tin alloy combined with artificial neural network prediction

Seong Y. Oh, Fang-Yu Yueh, and Jagdish P. Singh
Appl. Opt. 49(13) C36-C41 (2010)

Small-sample stacking model for qualitative analysis of aluminum alloys based on femtosecond laser-induced breakdown spectroscopy

Qing Ma, Ziyuan Liu, Tong Sun, Xun Gao, and YuJia Dai
Opt. Express 31(17) 27633-27653 (2023)

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.