Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Molecular identification of bio-fluids in gas phase using infrared spectroscopy

Not Accessible

Your library or personal account may give you access

Abstract

Bio-fluids are the source of a large number of metabolites. Identification and quantification of them can be an efficient step for understanding the internal chemistry of the body as well as for developing objective diagnostics of diseases. Several techniques have been developed so far; however, their metabolite identification and/or quantification are not reliable enough for acceptance by clinicians. As another promising step in this direction, we push infrared spectroscopy of bio-fluids in gas phase. Here we discuss features of breath and urine headspace realized with Fourier transform infrared spectroscopy. Molecular identification procedures based on component analysis of gas samples are proposed. In this paper, we show that aggregate data from different bio-fluids in gas phase can strengthen the diagnostics of the body state and disease.

© 2020 Optical Society of America

Full Article  |  PDF Article
More Like This
Concentration measurements of multiple analytes in human sera by near-infrared laser Raman spectroscopy

Jianan Y. Qu, Brian C. Wilson, and David Suria
Appl. Opt. 38(25) 5491-5498 (1999)

Real-time isotopic methane detection using mid-infrared spectroscopy

Jinghao Yang, Junchao Zhou, and Pao Tai Lin
Appl. Opt. 59(34) 10801-10807 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.