Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Progress in high-power continuous-wave quantum cascade lasers [Invited]

Abstract

Multi-watt continuous-wave room temperature operation with efficiency exceeding 10% has been demonstrated for quantum cascade lasers essentially in the entire mid-wave and long-wave infrared spectral regions. Along with interband cascade lasers, these devices are the only room-temperature lasers that directly convert electrical power into mid- and long-infrared optical power. In this paper, we review the progress in high-power quantum cascade lasers made over the last 10 years. Specifically, an overview of the most important active region, waveguide, and thermal design techniques is presented, and various aspects of die packaging for high-power applications are discussed. Prospects of power scaling with lateral device dimensions for reaching optical power level in the range from 10 W to 20 W are also analyzed. Finally, coherent and spectral beam-combining techniques for very high-power infrared platforms are discussed.

© 2017 Optical Society of America

Full Article  |  PDF Article

Corrections

17 October 2017: A minor correction was made to the paper title.


More Like This
Recent progress of quantum cascade laser research from 3 to 12  μm at the Center for Quantum Devices [Invited]

Manijeh Razeghi, Wenjia Zhou, Steven Slivken, Quan-Yong Lu, Donghai Wu, and Ryan McClintock
Appl. Opt. 56(31) H30-H44 (2017)

High-efficiency, high-power mid-infrared quantum cascade lasers [Invited]

Dan Botez, Jeremy D. Kirch, Colin Boyle, Kevin M. Oresick, Chris Sigler, Honghyuk Kim, Benjamin B. Knipfer, Jae Ha Ryu, Don Lindberg, Tom Earles, Luke J. Mawst, and Yuri V. Flores
Opt. Mater. Express 8(5) 1378-1398 (2018)

High-power, continuous-wave, phase-locked quantum cascade laser arrays emitting at 8 µm

Wenjia Zhou, Quan-Yong Lu, Dong-Hai Wu, Steven Slivken, and Manijeh Razeghi
Opt. Express 27(11) 15776-15785 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved