Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Nondestructive determination of optical properties of a pear using spatial frequency domain imaging combined with phase-measuring profilometry

Not Accessible

Your library or personal account may give you access

Abstract

Spatial frequency domain imaging (SFDI), as a rapid, noncontact, and scan-free method, can realize wide-field, quantitative optical property mapping and tomographic imaging for a biological sample. Phase-measuring profilometry (PMP) is a surface profile characterization method. Since the projection of structured light onto an object is the basis for PMP and SFDI, the SFDI system is capable of performing both techniques. In this work, we present the results of a feasibility study with the developed SFDI system to realize acquisition of the optical property information and the surface profile information. The surface profile information was used to correct the absorption (μa) maps and reduced scattering (μs) maps. The evaluation of correction effect of the PMP and the calibration and calculation of detection accuracy of the SFDI system were realized by using a series of self-made hemispheric and homogeneous solid phantoms covering a wide range of absorption and reduced scattering coefficients. The results show that the μa and μs maps become more uniform after using profilometry correction. The maximum relative errors of the system after profilometry correction and calibration were 8.74% for μa and 4.97% for μs at the wavelength of 527 nm, respectively. A case study was carried out on a pear to verify the application prospect of the method in the field of agricultural products quality inspection. Results indicate that μa and μs maps of a pear after profilometry correction and calibration were more uniform and more comparable with the reported values.

© 2017 Optical Society of America

Full Article  |  PDF Article
More Like This
Three-dimensional phantoms for curvature correction in spatial frequency domain imaging

Thu T. A. Nguyen, Hanh N. D. Le, Minh Vo, Zhaoyang Wang, Long Luu, and Jessica C. Ramella-Roman
Biomed. Opt. Express 3(6) 1200-1214 (2012)

Wide-field optical spectroscopy system integrating reflectance and spatial frequency domain imaging to measure attenuation-corrected intrinsic tissue fluorescence in radical prostatectomy specimens

Emile Beaulieu, Audrey Laurence, Mirela Birlea, Guillaume Sheehy, Leticia Angulo-Rodriguez, Mathieu Latour, Roula Albadine, Fred Saad, Dominique Trudel, and Frédéric Leblond
Biomed. Opt. Express 11(4) 2052-2072 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved