Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Mid-infrared absorption-spectroscopy-based carbon dioxide sensor network in greenhouse agriculture: development and deployment

Not Accessible

Your library or personal account may give you access

Abstract

A mid-infrared carbon dioxide (CO2) sensor was experimentally demonstrated for application in a greenhouse farm environment. An optical module was developed using a lamp source, a dual-channel pyre-electrical detector, and a spherical mirror. A multi-pass gas chamber and a dual-channel detection method were adopted to effectively enhance light collection efficiency and suppress environmental influences. The moisture-proof function realized by a breathable waterproof chamber was specially designed for the application of such a sensor in a greenhouse with high humidity. Sensor structure of the optical part and electrical part were described, respectively, and related experiments were carried out to evaluate the sensor performance on CO2 concentration. The limit of detection of the sensor is 30 ppm with an absorption length of 30 cm. The relative detection error is less than 5% within the measurement range of 30–5000 ppm. The fluctuations for the long-term (10 h) stability measurements on a 500 ppm CO2 sample and a 2000 ppm CO2 sample are 1.08% and 3.6%, respectively, indicating a good stability of the sensor. A wireless sensor network-based automatic monitoring system was implemented for greenhouse application using multiple mid-infrared CO2 sensor nodes. A monitor software based on LabVIEW was realized via a laptop for real-time environmental data display, storage, and website sharing capabilities. A field experiment of the sensor network was carried out in the town of Shelin in Jilin Province, China, which proved that the whole monitoring system possesses stable sensing performance for practical application under the circumstances of a greenhouse.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Silicon microring refractometric sensor for atmospheric CO2 gas monitoring

Guangcan Mi, Cameron Horvath, Mirwais Aktary, and Vien Van
Opt. Express 24(2) 1773-1780 (2016)

ICL-based mid-infrared carbon dioxide sensor system for deep-sea natural gas hydrate exploration

Zhiwei Liu, Chuantao Zheng, Chen Chen, Yafei Li, Hongtao Xie, Qiang Ren, Yiding Wang, and Frank K. Tittel
Opt. Express 27(4) 5598-5609 (2019)

Single-ended mid-infrared laser-absorption sensor for simultaneous in situ measurements of H2O, CO2, CO, and temperature in combustion flows

Wen Yu Peng, Christopher S. Goldenstein, R. Mitchell Spearrin, Jay B. Jeffries, and Ronald K. Hanson
Appl. Opt. 55(33) 9347-9359 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved