Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Gain-switched Ti:sapphire laser-based photoacoustic imaging

Not Accessible

Your library or personal account may give you access

Abstract

We demonstrate photoacoustic (PA) imaging using a compact gain-switched Ti:sapphire laser. Additionally, a simple laser configuration is provided. The Ti:sapphire laser is pumped using a frequency-doubled pulsed neodymium-doped yttrium aluminum garnet pulse laser operating at a repetition rate of 10 Hz, with a pump energy of 37 mJ. No water cooling is required for the Ti:sapphire crystal. The output pulse energy and pulse duration of the laser are 13.6 mJ and 11 ns, respectively. Thus, the power conversion efficiency is 36.7%. As the end mirror in a laser cavity is adjusted in a horizontal direction, the output wavelength can be tuned within a range of 725–880 nm with a spectral bandwidth of approximately 1 nm. The laser has a small footprint size of 50cm×35cm including even laser pumping. Because the near-infrared region has significant advantages in the context of absorption and scattering in biological tissues, our laser can be used for PA imaging. Apart from obtaining PA images of a tube filled with indocyanine green immersed in water and placed under chicken breast tissue, our laser system could also be used for the simultaneous PA and ultrasound (US) dual-modality imaging of blood vessels lying beneath the skin of a human middle finger. We used a commercially available US machine for the PA and US dual-modality imaging.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Deep tissue photoacoustic computed tomography with a fast and compact laser system

Depeng Wang, Yuehang Wang, Weiran Wang, Dandan Luo, Upendra Chitgupi, Jumin Geng, Yang Zhou, Lidai Wang, Jonathan F Lovell, and Jun Xia
Biomed. Opt. Express 8(1) 112-123 (2017)

High frame rate photoacoustic imaging at 7000 frames per second using clinical ultrasound system

Kathyayini Sivasubramanian and Manojit Pramanik
Biomed. Opt. Express 7(2) 312-323 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.