Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Enhanced two-frequency phase-shifting method

Abstract

One of the major challenges of employing a two-frequency (or two-wavelength) phase-shifting algorithm for absolute three-dimensional shape measurement is its sensitivity to noise. Therefore, three- or more-frequency phase-shifting algorithms are often used in lieu of a two-frequency phase-shifting algorithm for applications where the noise is severe. This paper proposes a method to use geometric constraints of digital fringe projection system to substantially reduce the noise impact by allowing the use of more than one period of equivalent phase map for temporal phase unwrapping. Experiments successfully verified the enhanced performance of the proposed method without increasing the number of patterns.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Absolute three-dimensional shape measurement with two-frequency square binary patterns

Chufan Jiang and Song Zhang
Appl. Opt. 56(31) 8710-8718 (2017)

Pixel-wise absolute phase unwrapping using geometric constraints of structured light system

Yatong An, Jae-Sang Hyun, and Song Zhang
Opt. Express 24(16) 18445-18459 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.