Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fiber Bragg grating-based plane strain monitoring of aerostat envelope structures

Not Accessible

Your library or personal account may give you access

Abstract

A theoretical analysis of fiber Bragg grating (FBG)-based plane strain monitoring of aerostat envelope structures is presented. Plane strain analysis of FBG-based aerostat envelope structures is much more complex than the case along the axis of the optical fiber because the effect of transverse stress on the FBG should be taken into consideration. To achieve accurate strain measurement of the aerostat envelope, a theoretical model is set up by using two perpendicular fibers in the monitoring. An analytical formula that evaluates the relationship between the strain measured by FBG sensors and the real one in the aerostat envelope is established. On the other hand, the real strain of aerostat envelope strain is affected by two unknown parameters, axial transfer rate KL and the radial transfer rate KR. An equation is derived to calculate the axial transfer rate KL. Then, the finite element method results show that KR is a very small value, but it cannot be ignored in accurate measurement. This paper would lay a theoretical groundwork for the research and design of FBG sensors in the structural health monitoring of aerostat envelope structures.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Analysis of strain transfer of six-layer surface-bonded fiber Bragg gratings

Quan-bao Wang, Ye Qiu, Hai-tao Zhao, Ji-an Chen, Yue-ying Wang, and Zhen-min Fan
Appl. Opt. 51(18) 4129-4138 (2012)

Fiber Bragg grating displacement sensor based on synchronous deformation sensing for real-time monitoring of a tunnel lining

Heyi Cai, Xiangpeng Xiao, Qingguo Song, Qizhen Sun, and Zhijun Yan
Appl. Opt. 62(31) 8299-8307 (2023)

Design and experimental study of a fiber Bragg grating strain sensor with enhanced sensitivity

Jianjun Pan, Wei Hou, Liangying Wang, Zisong Zou, and Fan Xiao
Appl. Opt. 61(28) 8172-8179 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.