Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Heterodyne efficiency of a coherent free-space optical communication model through atmospheric turbulence

Not Accessible

Your library or personal account may give you access

Abstract

The heterodyne efficiency of a coherent free-space optical (FSO) communication model under the effects of atmospheric turbulence and misalignment is studied in this paper. To be more general, both the transmitted beam and local oscillator beam are assumed to be partially coherent based on the Gaussian Schell model (GSM). By using the derived analytical form of the cross-spectral function of a GSM beam propagating through atmospheric turbulence, a closed-form expression of heterodyne efficiency is derived, assuming that the propagation directions for the transmitted and local oscillator beams are slightly different. Then the impacts of atmospheric turbulence, configuration of the two beams (namely, beam radius and spatial coherence width), detector radius, and misalignment angle over heterodyne efficiency are examined. Numerical results suggest that the beam radius of the two overlapping beams can be optimized to achieve a maximum heterodyne efficiency according to the turbulence conditions and the detector radius. It is also found that atmospheric turbulence conditions will significantly degrade the efficiency of heterodyne detection, and compared to fully coherent beams, partially coherent beams are less sensitive to the changes in turbulence conditions and more robust against misalignment at the receiver.

© 2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Effect of beam mode of partially Gaussian Schell-model beam on a heterodyne detection system in turbulence

Zhen Kun Tan, Ying Xiu Kong, Si Chen Lei, Jia Yu, and Jia Liu
Appl. Opt. 59(16) 4977-4987 (2020)

Effects of source spatial partial coherence on temporal fade statistics of irradiance flux in free-space optical links through atmospheric turbulence

Chunyi Chen, Huamin Yang, Zhou Zhou, Weizhi Zhang, Mohsen Kavehrad, Shoufeng Tong, and Tianshu Wang
Opt. Express 21(24) 29731-29743 (2013)

Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence

Yamaç Dikmelik and Frederic M. Davidson
Appl. Opt. 44(23) 4946-4952 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (36)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved