Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Proposal for enhancing the transmission efficiency of photonic crystal 60 ° waveguide bends by means of optofluidic infiltration

Not Accessible

Your library or personal account may give you access

Abstract

We are proposing a procedure to enhance the transmission efficiency of 60° photonic crystal (PhC) waveguide bends by means of selective optofluidic infiltration of an air hole, which is created as a point defect at the center of the conventional 60° PhC bend. Numerical studies demonstrate that by varying the defect radius and indices of optical fluids, one may enhance the bend transmission level and tune its 3dB bandwidth over a substantial range of 88138nm. In order to perform the numerical simulations, we have used two-dimensional (2D) finite difference time domain plane wave method, keeping in mind that the spectral features obtained by these 2D calculations are about 15% redshifted from those of real three-dimensional structures.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Proposal for postfabrication fine-tuning of three-port photonic crystal channel drop filters by means of optofluidic infiltration

M. H. Bitarafan, M. K. Moravvej-Farshi, and M. Ebnali-Heidari
Appl. Opt. 50(17) 2622-2627 (2011)

Wideband and low-dispersion engineered slow light using liquid infiltration of a modified photonic crystal waveguide

Mohammad Pourmand, Arash Karimkhani, and Fakhroddin Nazari
Appl. Opt. 55(35) 10060-10066 (2016)

Wideband slow light in photonic crystal slab waveguide based on geometry adjustment and optofluidic infiltration

Morteza Janfaza and Mohammad Ali Mansouri-Birjandi
Appl. Opt. 52(34) 8184-8189 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.