Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Interferometry through the Turbulent Atmosphere at an Optical Path Difference of 354 m

Not Accessible

Your library or personal account may give you access

Abstract

A modified Michelson interferometer with a stable He–Ne laser source has been used to study fluctuations in the mean refractive index over a long path through the turbulent atmosphere. Distinct interference fringes were obtained at mirror separations up to 177 m, corresponding to an optical path difference of 354 m. The spatial stability of the interference fringes was found to decrease with increasing optical path length, indicating an increasing contribution from the atmosphere. Details of the interferometer and the experimental procedure are given as well as a discussion of the fluctuations in the mean refractive index.

© 1966 Optical Society of America

Full Article  |  PDF Article
More Like This
Consideration of Atmospheric Turbulence in Laser Systems Design

J. I. Davis
Appl. Opt. 5(1) 139-147 (1966)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved