Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Single-resolution and multiresolution extended-Kalman-filter-based reconstruction approaches to optical refraction tomography

Not Accessible

Your library or personal account may give you access

Abstract

The problem of reconstruction of a refractive-index distribution (RID) in optical refraction tomography (ORT) with optical path-length difference (OPD) data is solved using two adaptive-estimation-based extended-Kalman-filter (EKF) approaches. First, a basic single-resolution EKF (SR-EKF) is applied to a state variable model describing the tomographic process, to estimate the RID of an optically transparent refracting object from noisy OPD data. The initialization of the biases and covariances corresponding to the state and measurement noise is discussed. The state and measurement noise biases and covariances are adaptively estimated. An EKF is then applied to the wavelet-transformed state variable model to yield a wavelet-based multiresolution EKF (MR-EKF) solution approach. To numerically validate the adaptive EKF approaches, we evaluate them with benchmark studies of standard stationary cases, where comparative results with commonly used efficient deterministic approaches can be obtained. Detailed reconstruction studies for the SR-EKF and two versions of the MR-EKF (with Haar and Daubechies-4 wavelets) compare well with those obtained from a typically used variant of the (deterministic) algebraic reconstruction technique, the average correction per projection method, thus establishing the capability of the EKF for ORT. To the best of our knowledge, the present work contains unique reconstruction studies encompassing the use of EKF for ORT in single-resolution and multiresolution formulations, and also in the use of adaptive estimation of the EKF’s noise covariances.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Non-stationary reconstruction for dynamic fluorescence molecular tomography with extended kalman filter

Xin Liu, Hongkai Wang, and Zhuangzhi Yan
Biomed. Opt. Express 7(11) 4527-4542 (2016)

Indirect and direct estimation of pharmacokinetic parameters in dynamic diffuse fluorescence tomography by adaptive extended Kalman filtering

Limin Zhang, Yingxue Pan, Zhichao Zhao, Nan Cheng, Xin Wang, Yiwen Ma, Mengyu Jia, and Feng Gao
Appl. Opt. 61(22) G48-G56 (2022)

Factorized extended Kalman filter for optical processing

James L. Fisher, David P. Casasent, and Charles P. Neuman
Appl. Opt. 25(10) 1615-1621 (1986)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.