Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Formation of anisotropic diffraction gratings in a polymer-dispersed liquid crystal by polarization modulation using a spatial light modulator

Not Accessible

Your library or personal account may give you access

Abstract

Anisotropic diffraction gratings based on a holographic polymer-dispersed liquid crystal (HPDLC) are realized by interferometric exposure using a spatial light modulator (SLM). The SLM is used in the HPDLC grating formation for anisotropic holographic recordings of two-dimensional polarization states for an incident light beam. The diffraction efficiency for P-polarization and the distinctive ratio of diffraction efficiency in P-polarization to that in S-polarization increases with the signal level applied to the SLM. The resulting volume gratings exhibit diffraction efficiency of more than 60% and a distinctive ratio of diffraction over 100. The microscopic origin of the anisotropic property is investigated by an optical polarizing microscope. The novel characteristics of the anisotropic diffraction properties of HPDLC are applied to an image reconstruction technique.

© 2008 Optical Society of America

Full Article  |  PDF Article
More Like This
Optical reconfiguration by anisotropic diffraction in holographic polymer-dispersed liquid crystal memory

Akifumi Ogiwara and Minoru Watanabe
Appl. Opt. 51(21) 5168-5177 (2012)

Effects of thermal modulation on diffraction in liquid crystal composite gratings

Akifumi Ogiwara, Hiroshi Kakiuchida, Kazuki Yoshimura, Masato Tazawa, Akira Emoto, and Hiroshi Ono
Appl. Opt. 49(24) 4633-4640 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved