Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Time-domain Green functions for diffuse light in two adjoining turbid half-spaces

Not Accessible

Your library or personal account may give you access

Abstract

Propagation of light emitted by an instantaneous source located above a plane interface between two semi-infinite turbid media is considered using the diffusion approximation. Green functions are derived for an instantaneous line source and an instantaneous point source by the method of Bellman et al. [Philos. Mag. 40, 297 (1949)], which is based on integral transforms. Both two-dimensional and three-dimensional Green functions for diffuse light have been obtained in the form of single integrals that allow for fast calculation of the specific intensity in the whole space. The influence of the optical parameters of the two media (diffusion coefficients, absorptions, and refractive indices) on the shapes of the contour lines of the specific intensity is analyzed.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Green functions for diffuse light in a medium comprising two turbid half-spaces

Margarita L. Shendeleva
Appl. Opt. 43(28) 5334-5342 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (73)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.