Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Thermally induced birefringence in Nd:YAG slab lasers

Not Accessible

Your library or personal account may give you access

Abstract

We study thermally induced birefringence in crystalline Nd:YAG zigzag slab lasers and the associated depolarization losses. The optimum crystallographic orientation of the zigzag slab within the Nd:YAG boule and photoelastic effects in crystalline Nd:YAG slabs are briefly discussed. The depolarization is evaluated using the temperature and stress distributions, calculated using a finite element model, for realistically pumped and cooled slabs of finite dimensions. Jones matrices are then used to calculate the depolarization of the zigzag laser mode. We compare the predictions with measurements of depolarization, and suggest useful criteria for the design of the gain media for such lasers.

© 2006 Optical Society of America

Full Article  |  PDF Article
More Like This
Optical distortions in end-pumped zigzag slab lasers

Bing Tang, Tangjian Zhou, Dan Wang, and Mi Li
Appl. Opt. 54(10) 2693-2702 (2015)

Model of thermally induced wavefront distortion and birefringence in side-pumped Nd-doped YAG and phosphate glass heat capacity rod lasers

Liang Liu, Xiaobo Wang, Shaofeng Guo, Xiaojun Xu, and Qisheng Lu
Appl. Opt. 49(28) 5245-5253 (2010)

Yb:YAG and Nd:YAG edge-pumped slab lasers

T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer
Opt. Lett. 26(13) 986-988 (2001)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.