Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Simple algorithm for the measurement of absorption coefficients of a two-layered medium by spatially resolved and time-resolved reflectance

Not Accessible

Your library or personal account may give you access

Abstract

An inversion procedure for the recovery of absorption coefficients of a two-layered semi-infinite diffusive medium by use of time-resolved reflectance measured at two different source–detector distances is proposed. The inversion procedure is based on the property of the photon diffusion equation; i.e., the solution of the diffusion equation for the time-resolved reflectance measured at a longer source–detector distance coincides with that measured at a shorter one by a proper temporal, spatial, and intensity transformation. This inversion procedure, used together with the results of one set of Monte Carlo simulations, is validated as working well when the values of the scattering coefficients of the two layers and the thickness of the first layer are within a range of interest in tissue optics.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Investigation of two-layered turbid media with time-resolved reflectance

Alwin Kienle, Thomas Glanzmann, Georges Wagnières, and Hubert van den Bergh
Appl. Opt. 37(28) 6852-6862 (1998)

Noninvasive determination of the optical properties of two-layered turbid media

Alwin Kienle, Michael S. Patterson, Nora Dögnitz, Roland Bays, Georges Wagnières, and Hubert van den Bergh
Appl. Opt. 37(4) 779-791 (1998)

Procedure for retrieving the optical properties of a two-layered medium from time-resolved reflectance measure ments

Fabrizio Martelli, Samuele Del Bianco, and Giovanni Zaccanti
Opt. Lett. 28(14) 1236-1238 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.