Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Stability of photodiodes under irradiation with a 157-nm pulsed excimer laser

Not Accessible

Your library or personal account may give you access

Abstract

We have measured the stability of a variety of photodiodes exposed to 157-nm light from a pulsed excimer laser by using a radiometry beamline at the Synchrotron Ultraviolet Radiation Facility at the National Institute of Standards and Technology. The intense, pulsed laser light exposed the photodiodes, whereas the low-intensity, continuously tunable light from the synchrotron source measured changes in the characteristics of the photodiodes, such as in the responsivity and the reflectance from the surface of a photodiode. Photodiodes studied include both silicon pn-junction and Schottky-barrier types. Among these photodiodes, we found that the damage mechanism for photodiodes with SiO2-based passivating layers is mainly the buildup of SiO2–Si interface trap states. The interface trap state buildup is well known for other semiconductor devices and is generally recognized as a product induced by radiation with an energy more than the 9-eV SiO2 bandgap energy rather than the 7.9-eV energy of the 157-nm radiation. Based on the generation of interface trap states, a model is proposed to describe the dependence of detector responsivity on exposure to 157-nm radiation. We also observed slow recovery in some of the damaged photodiodes, confirming that some of the interface trap states are only semipermanent. Radiation damage induced by low-power continuous 157-nm synchrotron light was also studied. As for the other photodiodes with no SiO2 layers, measurement results support the assumption that the changes in responsivity are due mainly to the deposition of thin layers on the tops of the detectors during laser irradiation.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Metrology of pulsed radiation for 157-nm lithography

Mathias Richter, Udo Kroth, Alexander Gottwald, Christopher Gerth, Kai Tiedtke, Terubumi Saito, Ivan Tassy, and Klaus Vogler
Appl. Opt. 41(34) 7167-7172 (2002)

Characterization of an ultraviolet and a vacuum-ultraviolet irradiance meter with synchrotron radiation

Ping-Shine Shaw, Rajeev Gupta, and Keith R. Lykke
Appl. Opt. 41(34) 7173-7178 (2002)

Irradiation stability of silicon photodiodes for extreme-ultraviolet radiation

Frank Scholze, Roman Klein, and Thomas Bock
Appl. Opt. 42(28) 5621-5626 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.