Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quantitative oximetry of breast tumors: a near-infrared method that identifies two optimal wavelengths for each tumor

Not Accessible

Your library or personal account may give you access

Abstract

We present a noninvasive optical method to measure the oxygen saturation of hemoglobin in breast lesions. This method introduces the novel concept that the best choice of near-infrared wavelengths for noninvasive tumor oximetry consists of a wavelength pair (λ1, λ2) within the range 680–880 nm, where the specific values of λ1 and λ2 depend on the optical properties of the specific tumor under examination. Our method involves two steps: (1) identify the optimal wavelength pair for each tumor and (2) measure the tumor oxygenation using the optical data at the two selected wavelengths. We have tested our method by acquiring experimental optical data from turbid media containing cylindrical or irregularly shaped inhomogeneities and by computing theoretical data for the case of spherical lesions embedded in a highly scattering medium. We have found that our optical method can provide accurate and quantitative measurements of the oxygenation of embedded lesions without requiring knowledge of their size, shape, and depth.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Near-infrared spectral imaging of the female breast for quantitative oximetry in optical mammography

Yang Yu, Ning Liu, Angelo Sassaroli, and Sergio Fantini
Appl. Opt. 48(10) D225-D235 (2009)

Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods

Sergio Fantini, Scott A. Walker, Maria Angela Franceschini, Michael Kaschke, Peter M. Schlag, and K. Thomas Moesta
Appl. Opt. 37(10) 1982-1989 (1998)

Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors

Dirk Grosenick, K. Thomas Moesta, Heidrun Wabnitz, Jörg Mucke, Christian Stroszczynski, Rainer Macdonald, Peter M. Schlag, and Herbert Rinneberg
Appl. Opt. 42(16) 3170-3186 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved