Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Universal antireflection coatings for substrates for the visible spectral region

Not Accessible

Your library or personal account may give you access

Abstract

It is possible to design normal-incidence antireflection coatings that reduce the reflectance of any substrate with a refractive index that lies in the range of 1.48 to 1.75. The performance of such coatings depends on the width of the spectral region over which the reflectance is to be suppressed, on the coating materials used for their construction, and on the overall optical thickness of the layer system. For example, the calculated average spectral reflectance of a set of six different substrates with refractive indices 1.48, 1.55, 1.60, 1.65, 1.70, and 1.75, when coated with a 0.56-μm-thick, eight-layer antireflection coating designed for the 0.40–0.80-μm spectral region, was 0.34%. This is higher than the average reflectance that is attainable with a conventional antireflection coating of similar optical thicknesses designed for a particular refractive index. However, it is an acceptable value for most applications. With the universal type of antireflection coating described, it is thus possible to coat a number of different refractive-index substrates in one deposition run, and this can result in considerable cost and time savings.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
Antireflection coatings designed for two different infrared substrates

J. A. Dobrowolski, Parmjeet Panchhi, and Martin High
Appl. Opt. 35(1) 102-105 (1996)

Antireflection coatings for both visible and far-infrared spectral regions

Li Li, J. A. Dobrowolski, J. D. Sankey, and J. R. Wimperis
Appl. Opt. 31(28) 6150-6156 (1992)

Optimal single-band normal-incidence antireflection coatings

J. A. Dobrowolski, A. V. Tikhonravov, M. K. Trubetskov, Brian T. Sullivan, and P. G. Verly
Appl. Opt. 35(4) 644-658 (1996)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.