Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Measurement of scattering properties of individual particles with a scanning flow cytometer

Not Accessible

Your library or personal account may give you access

Abstract

A hydrofocusing head with an optical cuvette has been developed for the flow cytometer to generate complete scatter patterns of single particles at scattering angles ranging from 10° to 120°. The scatter signal has been measured as a function of the angle (a flying indicatrix) by the use of particle motion within a scanning system of the flow cytometer by the use of a single photomultiplier. Scattering data measured with the flow cytometer have been compared with those calculated from Mie theory for latex particles. A calculation algorithm has been used to estimate the size and the refractive index of spherical particles from the scattering data measured.

© 1995 Optical Society of America

Full Article  |  PDF Article
More Like This
Absolute real-time measurement of particle size distribution with the flying light-scattering indicatrix method

V. P. Maltsev, A. V. Chernyshev, K. A. Sem'yanov, and E. Soini
Appl. Opt. 35(18) 3275-3280 (1996)

Light-scattering properties of individual erythrocytes

Alexandr N. Shvalov, Juhani T. Soini, Andrey V. Chernyshev, Peter A. Tarasov, Erkki Soini, and Valeri P. Maltsev
Appl. Opt. 38(1) 230-235 (1999)

Measured Light-Scattering Properties of Individual Aerosol Particles Compared to Mie Scattering Theory

R. G. Pinnick, J. M. Rosen, and D. J. Hofmann
Appl. Opt. 12(1) 37-41 (1973)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.