Abstract

We investigate the use of wavepacket interferometry with intersubband electronic wavepackets in suitably designed modulation-doped quantum-well structures. We study four quantum-well configurations, where the intersubband wavepackets are created by two sub-picosecond far- infrared laser pulses. By varying the delay and phase relation between the two pulses the interference between the packets and thus also the final excited state population can be controlled. The effects we discuss are purely coherent and can be used to study decoherence in intersubband transitions. Also, due to its sensitivity to the shape of the potential energy, wavepacket interferometry could be used to probe details of the potential energy, such as those caused by the presence of defects in artificially grown samples.

© 1998 Optical Society of America

PDF Article
More Like This
Ultrafast coherent dynamics of excitons of higher-order subbands in semiconductor quantum wells

S. Arlt, U. Siegner, F. Morier-Genoud, and U. Keller
RMD6 Radiative Processes and Dephasing in Semiconductors (RPDS) 1998

Ultrafast coherent response of semiconductor quantum wells for multisubband excitation

S. Arlt, U. Siegner, F. Morier-Genoud, and U. Keller
QFE2 International Quantum Electronics Conference (IQEC) 1998

Efficient intersubband-based SHG in semiconductor quantum wells

K.L. Vodopyanov, K. O’Neill, G.B. Serapiglia, C.C. Phillips, M. Hopkinson, I. Vurgaftman, and J.R. Meyer
CTuQ3 Conference on Lasers and Electro-Optics (CLEO) 1998

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription