Abstract

Photorefractive effects that are generated or affected by X-rays may allow to design an X-ray imaging system with high spatial resolution. Different concepts are studied: (1) The X-ray image yields a photoconductivity pattern. An external electric field is applied and hence a space-charge field builds up that is a replica of the original X-ray image. Through the electrooptic effect a spatial modulation of the birefringence occurs. This birefringence pattern can be detected directly with visible light, a polarizer, an analyzer, and a CCD camera. (2) An elementary holographic grating is recorded. The X-rays yield again a photoconductivity pattern and erase the hologram inhomogeneously. The diffracted light now bears the X-ray image. Both approaches are are studied with lithium-niobate crystals (LiNbO3). This material is found to be highly resistant against permanent damage caused by X-rays. Undesired photochromic effects are also found to be very weak. First experimental investigations of the two camera concepts are presented, and the principal advantages and disadvantages of such imaging systems are discussed. Besides high spatial resolution, that is limited in principle just by the wavelength of the probe light, other advantages are the time-integrative character of such a detector togehter with full reversibility.

© 2001 Optical Society of America

PDF Article
More Like This
Photorefractive X-ray Imaging

D. Berben, B. Sturman, K. Peithmann, and K. Buse
683 Photorefractive Effects, Materials, and Devices (PEMD) 2003

High resolution x-ray diffraction imaging of photorefractive gratings in barium titanate

Gerard Fogarty, Mark Cronin-Golomb, Bruce Steiner, and Uri Laor
CFH5 Conference on Lasers and Electro-Optics (CLEO) 1993

Nanoscale X-ray Imaging

Anne Sakdinawat
NMB5 Novel Techniques in Microscopy (NTM) 2009

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription