Abstract

Monitoring 3dB bandwidth and other spectrum related parameters at ROADMs provides information about quality of their filters. We propose a machine-learning model to estimate end-to-end filtering penalty for more accurate QoT estimation of future connections.

© 2020 The Author(s)

PDF Article
More Like This
The Perks of Using Machine Learning for QoT Estimation with Uncertain Network Parameters

Matteo Lonardi, Jelena Pesic, Thierry Zami, and Nicola Rossi
NeM3B.2 Photonic Networks and Devices (Networks) 2020

How Uncertainty on the Fiber Span Lengths Influences QoT Estimation Using Machine Learning in WDM Networks

J. Pesic, M. Lonardi, N. Rossi, T. Zami, E. Seve, and Y. Pointurier
Th3D.5 Optical Fiber Communication Conference (OFC) 2020

Experimental Comparisons between Machine Learning and Analytical Models for QoT Estimations in WDM Systems

Qirui Fan, Jianing Lu, Gai Zhou, Derek Zeng, Changjian Guo, Linyue Lu, Jianqiang Li, Chongjin Xie, Chao Lu, Faisal Nadeem Khan, and Alan Pak Tao Lau
M2J.2 Optical Fiber Communication Conference (OFC) 2020

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription