We propose a deep neural network model that instantaneously predicts the optical response of nanopatterned silicon photonic power splitter topologies, and inversely approximates compact (2.6×2.6 µm2) and efficient (above 92%) power splitters for target splitting ratios.

© 2019 The Author(s)

PDF Article
More Like This
Inverse design for integrated photonics using deep neural network

Keisuke Kojima, Toshiaki Koike-Akino, Yingheng Tang, and Ye Wang
IF3A.6 Integrated Photonics Research, Silicon and Nanophotonics (IPRSN) 2021

Inverse Design of Nanophotonic Devices using Deep Neural Networks

Keisuke Kojima, Yingheng Tang, Toshiaki Koike-Akino, Ye Wang, Devesh Jha, Kieran Parsons, Mohammad H. Tahersima, Fengqiao Sang, Jonathan Klamkin, and Minghao Qi
Su1A.1 Asia Communications and Photonics Conference (ACPC) 2020

Nanostructured Photonic Power Splitter Design via Convolutional Neural Networks

Mohammad H. Tahersima, Keisuke Kojima, Toshiaki Koike-Akino, Devesh Jha, Bingnan Wang, Chungwei Lin, and Kieran Parsons
SW4J.6 CLEO: Science and Innovations (CLEO_SI) 2019


You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access Optica Member Subscription