Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 24,
  • Issue 2,
  • pp. 935-
  • (2006)

Design of Multistage Gain-Flattened Fiber Raman Amplifiers

Not Accessible

Your library or personal account may give you access

Abstract

This paper presents a design approach for multistage gain-flattened fiber Raman amplifiers (FRAs) utilizing the multiwavelength-pumping scheme. To the authors' best knowledge, it is the first time that Raman amplifiers of more than one stage are considered in the design process so as to optimize multistage amplifier performance simultaneously. It is shown both theoretically and experimentally that optical power path integrals among several stages can, in principle, be arbitrarily redistributed while maintaining its gain performance, as long as the consolidated sums at different pump wavelengths are unaltered. The overall gain spectrum of a multistage FRA is thus very close to the cumulative spectrum of chained identical single-stage amplifiers with span numbers equal to its stages. However, the traditional prerequisite to minimize gain flatness in every stage is no longer required. It provides flexibilities to take full advantage of pump lasers with moderate launched powers and allows the reduction of the number of pump lasers and/or wavelengths in most stages. By arranging small positive net gain to the first stages and enhancing it at shorter signal wavelengths, significant reduction and flattening of total noise figure (NF) is achieved even if a pure backward pumping scheme is utilized. Finally, various pumping configurations for Raman amplifiers with hybrid dispersion-compensating fiber (DCF) and standard single-mode fiber (SMF) are discussed, with the objective of realizing flattened gain and noise performance simultaneously without using forward pumps.

© 2006 IEEE

PDF Article
More Like This
Gain-flattened fiber Raman amplifiers with nonlinearity-broadened pumps

D. A. Chestnut and J. R. Taylor
Opt. Lett. 28(23) 2294-2296 (2003)

Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band

Shailendra K. Varshney, Takeshi Fujisawa, Kunimasa Saitoh, and Masanori Koshiba
Opt. Express 13(23) 9516-9526 (2005)

Tailoring of Raman gain bandwidth of tellurite glasses for designing gain-flattened fiber Raman amplifiers

Rajan Jose, Guanshi Qin, Yusuke Arai, and Yasutake Ohishi
J. Opt. Soc. Am. B 25(3) 373-382 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.