Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Enhancement of the downhill simplex method of optimization

Not Accessible

Your library or personal account may give you access

Abstract

The downhill simplex method of optimization is a “geometric” method to achieve function minimization. The standard algorithm uses arbitrary values for the deterministic factors that describe the “movement” of the simplex in the merit space. While it is a robust method of optimization, it is relatively slow to converge to local minima. However, its stability and the lack of use of derivates make it useful for optical design optimization, especially for the field of illumination. This paper describes preliminary efforts of optimizing the performance of the simplex optimizer. This enhancement is accomplished by optimizing the various control factors: alpha (reflection), beta (contraction), and gamma (expansion). This effort is accomplished by investigating the “end game” of optimal design, i.e., the shape of the figure of merit space is parabolic in N-dimensions near local minima. The figure of merit for the control factor optimization is the number of iterations to achieve a solution in comparison to the same case using the standard control factors. This optimization is done for parabolic wells of order N = 2, 3, 4, and 5. In this preliminary study it is shown that with the correct choice of the control factors, one can achieve up to a 20% improvement in convergence. Higher order parabolic wells, techniques using gradient weighting, and the inclusion of additional control factors will lead to more improvement. This additional work will be developed and presented.

© 2002 Optical Society of America

PDF Article
More Like This
Applications of a Genetic and Simplex Algorithm based Hybrid Algorithm in Optical Film Design and Optimization

Yonggang Wu, Donggong Peng, Hongfei Jiao, Zhenhua Wang, Hong Cao, and Li Zhang
WB7 Optical Interference Coatings (OIC) 2007

Optimization of Illumination Systems

R. John Koshel
TuW3 Frontiers in Optics (FiO) 2003

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved