Abstract

Quantum optical memories are devices that store quantum states of light, which can allow for the active synchronization of probabilistic events within large-scale quantum networks. Recent work on quantum memories have seen impressive quantum operation, albeit still suffering from noise on the output mode of the device. Here we demonstrate a noise-free quantum memory for light based on the off-resonant cascaded absorption of photons in a warm vapour of caesium atoms. The memory is characterized by measuring a noise floor of 8 × 106 photons per pulse. We demonstrate genuine quantum operation by storing and recalling on-demand heralded single photons with a heralded second-order autocorrelation function of g(2) = 0.028 ± 0.009.

© 2017 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription