Abstract

There is large industry demand for qualified engineers and technicians in photonics advanced manufacturing. Current workforce training methods require expensive state-of-the-art laboratory equipment, as well as commercial licenses for photonic design software, which can be prohibitively costly for many universities. Virtual laboratories and Massive Open Online Courses (MOOCs) can help fill this training gap by providing a scalable approach to photonics workforce education for an international audience. In this project, AIM Photonics Academy—the education initiative of AIM Photonics, a Manufacturing USA Institute—is creating a virtual laboratory to enable self-directed learning for the emerging photonics workforce. Students learn photonic device and circuit modeling in a 3D online virtual lab environment with interactive simulations of micron-scale photonic visualizations. An intuitive interface highlights the most critical device design parameters and their optimal operational settings for applications in Datacom, wireless communication, sensing, and imaging. Simulations include silicon waveguide propagation and loss, radial waveguide bends, and directional couplers for photonic integrated circuits (PICs). In spring of 2019, AIM Academy has integrated these simulations into an online course focused on PIC-chip design, with a fundamentals course expected in fall of 2019. Additionally, these online tools will be used in a blended learning curriculum in 2020 to train engineers and technicians in semiconductor design, testing and packaging for photonics applications. Following online module completion, students can take blended learning on-site workshops at affiliated university laboratories to capitalize on their simulated training with hands-on experiments in chip design, packaging, and optical or electrical testing.

© 2019 SPIE, ICO, IEEE, OSA

PDF Article
More Like This
Integrated Photonics and Application-Specific Design on a Massive Open Online Course Platform

Sajan Saini, Stefan Preble, Miloš Popović, Jaime Cardenas, Alan Kost, Erik Verlage, Gregory Howland, and Lionel C. Kimerling
11143_151 Education and Training in Optics and Photonics (ETOP) 2019

A modular laboratory curriculum for teaching integrated photonics to students with diverse backgrounds

Samuel Serna, Nancy Hidalgo, Janice Tjan, Kevin McComber, Lionel Kimerling, Erik Verlage, Julie Diop, Juejun Hu, Sajan Saini, Anu Agarwal, Gerald Gagnon, Stefan Preble, Gregory Howland, Matthew van Niekerk, Jeff Steidle, Karl Mcnulty, Jaime Cardenas, Meiting Song, Miloš Popović, Anatoly Khilo, Pradnya Nagarkar, Farhad Vazehgoo, Ira Moskowitz, Guiru Gu, Cheryl Schnitzer, Edward Deveney, Thomas Kling, Douglas Petkie, and Jacob Longacre
11143_142 Education and Training in Optics and Photonics (ETOP) 2019

A modular industry-centered program for photonics and integrated photonics certification

David Simon, Guiru Gu, Cheryl Schnitzer, Edward Deveney, Thomas Kling, Julie Diop, and Sari Tower
11143_94 Education and Training in Optics and Photonics (ETOP) 2019

References

  • View by:

  1. “Roadmap | AIM Photonics Academy.”, https://aimphotonics.academy/roadmap (1 May 2019 ).
  2. MarketsandMarkets, “Silicon Photonics Market by Product (Transceiver, Switch, Variable Optical Attenuator, Cable, Sensor), Application (Data Center, Telecommunications, Military Defense, Medical and Life Sciences, Sensing), Component, and Geography - Global Forecast to 2023” (2018).
  3. B. Khan, [Managing E-Learning Strategies: Design, Delivery, Implementation and Evaluation], Information Science Publishing (2005).
  4. K. K. Bhagat, L. Y. Wu, and C.-Y. Chang, “Development and validation of the perception of students towards online learning (POSTOL),” Educ. Technol. Soc. 19(1), 350–359 (2016).
  5. J. Voogt and G. Knezek, eds., [International Handbook of Information Technology in Primary and Secondary Education], Springer US (2008).
  6. E. Kowch, “New Capabilities for Cyber Charter School Leadership: An Emerging Imperative for Integrating Educational Technology and Educational Leadership Knowledge,” TechTrends Link. Res. Pract. Improve Learn. 53(4), 41–48 (2009).
  7. I. Sahin and M. Shelley, “Considering Students’ Perceptions: The Distance Education Student Satisfaction Model,” J. Educ. Technol. Soc. 11(3), 216–223 (2008).
  8. A. Rossett, ed., [The ASTD E-Learning Handbook: Best Practices, Strategies, and Case Studies for an Emerging Field], McGraw-Hill Trade (2002).
  9. K.-E. Chang, Y.-L. Chen, H.-Y. Lin, and Y.-T. Sung, “Effects of learning support in simulation-based physics learning,” Comput. Educ. 51(4), 1486–1498 (2008).
    [Crossref]
  10. K. Squire, M. Barnett, J. M. Grant, and T. Higginbotham, “Electromagnetism Supercharged! Learning Physics with Digital Simulation Games,” 8.
  11. C. Koh, H. S. Tan, K. C. Tan, L. Fang, F. M. Fong, D. Kan, S. L. Lye, and M. L. Wee, “Investigating the Effect of 3D Simulation Based Learning on the Motivation and Performance of Engineering Students,” J. Eng. Educ. 99(3), 237–251 (2010).
    [Crossref]
  12. A. Paul, N. Podolefsky, and K. Perkins, “Guiding without feeling guided: Implicit scaffolding through interactive simulation design,” AIP Conf. Proc. 1513(1), 302–305 (2013).
    [Crossref]
  13. E. B. Moore, J. M. Chamberlain, R. Parson, and K. K. Perkins, “PhET Interactive Simulations: Transformative Tools for Teaching Chemistry,” J. Chem. Educ. 91(8), 1191–1197 (2014).
    [Crossref]
  14. J. L. Plass, B. D. Homer, C. K. Kinzer, Y. K. Chang, J. Frye, W. Kaczetow, K. Isbister, and K. Perlin, “Metrics in Simulations and Games for Learning,” [Game Analytics: Maximizing the Value of Player Data], M. Seif El-Nasr, , A. Drachen, and , and A. Canossa, Eds., Springer London, London, 697–729 (2013).
  15. E. Klopfer, J. Haas, S. Osterweil, and L. Rosenheck, [Resonant Games], The MIT Press (2018).
  16. S. Agnisarman, A. Ponathil, S. Lopes, and K. Chalil Madathil, “An Empirical Study Investigating the Effectiveness of Integrating Anecdotal Patient Experiences into Healthcare Public Reports,” Proc. Hum”. Factors Ergon. Soc. Annu. Meet. 62(1), 533–537 (2018).
    [Crossref]
  17. Lumerical Inc., “FDTD Solutions: Making a CW movie,” https://kb.lumerical.com/layout_analysis_cw_movie.html (1 May 2019 ).
  18. AIM Photonics Academy / MITx., “Photonic Integrated Circuits 1,” edX, 31 August 2018, https://www.edx.org/course/photonic-integrated-circuits (1 May 2019).
  19. V. J. Shute and F. Ke, “Games, Learning, and Assessment,” [Assessment in Game-Based Learning: Foundations, Innovations, and Perspectives], D. Ifenthaler, D. Eseryel, and X. Ge, Eds., Springer New York, New York, NY, 43–58 (2012).
  20. Y. J. Kim, R. G. Almond, and V. J. Shute, “Applying Evidence-Centered Design for the Development of Game-Based Assessments in Physics Playground,” Int. J. Test. 16(2), 142–163 (2016).
    [Crossref]

2018 (2)

MarketsandMarkets, “Silicon Photonics Market by Product (Transceiver, Switch, Variable Optical Attenuator, Cable, Sensor), Application (Data Center, Telecommunications, Military Defense, Medical and Life Sciences, Sensing), Component, and Geography - Global Forecast to 2023” (2018).

S. Agnisarman, A. Ponathil, S. Lopes, and K. Chalil Madathil, “An Empirical Study Investigating the Effectiveness of Integrating Anecdotal Patient Experiences into Healthcare Public Reports,” Proc. Hum”. Factors Ergon. Soc. Annu. Meet. 62(1), 533–537 (2018).
[Crossref]

2016 (2)

Y. J. Kim, R. G. Almond, and V. J. Shute, “Applying Evidence-Centered Design for the Development of Game-Based Assessments in Physics Playground,” Int. J. Test. 16(2), 142–163 (2016).
[Crossref]

K. K. Bhagat, L. Y. Wu, and C.-Y. Chang, “Development and validation of the perception of students towards online learning (POSTOL),” Educ. Technol. Soc. 19(1), 350–359 (2016).

2014 (1)

E. B. Moore, J. M. Chamberlain, R. Parson, and K. K. Perkins, “PhET Interactive Simulations: Transformative Tools for Teaching Chemistry,” J. Chem. Educ. 91(8), 1191–1197 (2014).
[Crossref]

2013 (1)

A. Paul, N. Podolefsky, and K. Perkins, “Guiding without feeling guided: Implicit scaffolding through interactive simulation design,” AIP Conf. Proc. 1513(1), 302–305 (2013).
[Crossref]

2010 (1)

C. Koh, H. S. Tan, K. C. Tan, L. Fang, F. M. Fong, D. Kan, S. L. Lye, and M. L. Wee, “Investigating the Effect of 3D Simulation Based Learning on the Motivation and Performance of Engineering Students,” J. Eng. Educ. 99(3), 237–251 (2010).
[Crossref]

2009 (1)

E. Kowch, “New Capabilities for Cyber Charter School Leadership: An Emerging Imperative for Integrating Educational Technology and Educational Leadership Knowledge,” TechTrends Link. Res. Pract. Improve Learn. 53(4), 41–48 (2009).

2008 (2)

I. Sahin and M. Shelley, “Considering Students’ Perceptions: The Distance Education Student Satisfaction Model,” J. Educ. Technol. Soc. 11(3), 216–223 (2008).

K.-E. Chang, Y.-L. Chen, H.-Y. Lin, and Y.-T. Sung, “Effects of learning support in simulation-based physics learning,” Comput. Educ. 51(4), 1486–1498 (2008).
[Crossref]

Agnisarman, S.

S. Agnisarman, A. Ponathil, S. Lopes, and K. Chalil Madathil, “An Empirical Study Investigating the Effectiveness of Integrating Anecdotal Patient Experiences into Healthcare Public Reports,” Proc. Hum”. Factors Ergon. Soc. Annu. Meet. 62(1), 533–537 (2018).
[Crossref]

Almond, R. G.

Y. J. Kim, R. G. Almond, and V. J. Shute, “Applying Evidence-Centered Design for the Development of Game-Based Assessments in Physics Playground,” Int. J. Test. 16(2), 142–163 (2016).
[Crossref]

Barnett, M.

K. Squire, M. Barnett, J. M. Grant, and T. Higginbotham, “Electromagnetism Supercharged! Learning Physics with Digital Simulation Games,” 8.

Bhagat, K. K.

K. K. Bhagat, L. Y. Wu, and C.-Y. Chang, “Development and validation of the perception of students towards online learning (POSTOL),” Educ. Technol. Soc. 19(1), 350–359 (2016).

Chalil Madathil, K.

S. Agnisarman, A. Ponathil, S. Lopes, and K. Chalil Madathil, “An Empirical Study Investigating the Effectiveness of Integrating Anecdotal Patient Experiences into Healthcare Public Reports,” Proc. Hum”. Factors Ergon. Soc. Annu. Meet. 62(1), 533–537 (2018).
[Crossref]

Chamberlain, J. M.

E. B. Moore, J. M. Chamberlain, R. Parson, and K. K. Perkins, “PhET Interactive Simulations: Transformative Tools for Teaching Chemistry,” J. Chem. Educ. 91(8), 1191–1197 (2014).
[Crossref]

Chang, C.-Y.

K. K. Bhagat, L. Y. Wu, and C.-Y. Chang, “Development and validation of the perception of students towards online learning (POSTOL),” Educ. Technol. Soc. 19(1), 350–359 (2016).

Chang, K.-E.

K.-E. Chang, Y.-L. Chen, H.-Y. Lin, and Y.-T. Sung, “Effects of learning support in simulation-based physics learning,” Comput. Educ. 51(4), 1486–1498 (2008).
[Crossref]

Chang, Y. K.

J. L. Plass, B. D. Homer, C. K. Kinzer, Y. K. Chang, J. Frye, W. Kaczetow, K. Isbister, and K. Perlin, “Metrics in Simulations and Games for Learning,” [Game Analytics: Maximizing the Value of Player Data], M. Seif El-Nasr, , A. Drachen, and , and A. Canossa, Eds., Springer London, London, 697–729 (2013).

Chen, Y.-L.

K.-E. Chang, Y.-L. Chen, H.-Y. Lin, and Y.-T. Sung, “Effects of learning support in simulation-based physics learning,” Comput. Educ. 51(4), 1486–1498 (2008).
[Crossref]

Fang, L.

C. Koh, H. S. Tan, K. C. Tan, L. Fang, F. M. Fong, D. Kan, S. L. Lye, and M. L. Wee, “Investigating the Effect of 3D Simulation Based Learning on the Motivation and Performance of Engineering Students,” J. Eng. Educ. 99(3), 237–251 (2010).
[Crossref]

Fong, F. M.

C. Koh, H. S. Tan, K. C. Tan, L. Fang, F. M. Fong, D. Kan, S. L. Lye, and M. L. Wee, “Investigating the Effect of 3D Simulation Based Learning on the Motivation and Performance of Engineering Students,” J. Eng. Educ. 99(3), 237–251 (2010).
[Crossref]

Frye, J.

J. L. Plass, B. D. Homer, C. K. Kinzer, Y. K. Chang, J. Frye, W. Kaczetow, K. Isbister, and K. Perlin, “Metrics in Simulations and Games for Learning,” [Game Analytics: Maximizing the Value of Player Data], M. Seif El-Nasr, , A. Drachen, and , and A. Canossa, Eds., Springer London, London, 697–729 (2013).

Grant, J. M.

K. Squire, M. Barnett, J. M. Grant, and T. Higginbotham, “Electromagnetism Supercharged! Learning Physics with Digital Simulation Games,” 8.

Haas, J.

E. Klopfer, J. Haas, S. Osterweil, and L. Rosenheck, [Resonant Games], The MIT Press (2018).

Higginbotham, T.

K. Squire, M. Barnett, J. M. Grant, and T. Higginbotham, “Electromagnetism Supercharged! Learning Physics with Digital Simulation Games,” 8.

Homer, B. D.

J. L. Plass, B. D. Homer, C. K. Kinzer, Y. K. Chang, J. Frye, W. Kaczetow, K. Isbister, and K. Perlin, “Metrics in Simulations and Games for Learning,” [Game Analytics: Maximizing the Value of Player Data], M. Seif El-Nasr, , A. Drachen, and , and A. Canossa, Eds., Springer London, London, 697–729 (2013).

Isbister, K.

J. L. Plass, B. D. Homer, C. K. Kinzer, Y. K. Chang, J. Frye, W. Kaczetow, K. Isbister, and K. Perlin, “Metrics in Simulations and Games for Learning,” [Game Analytics: Maximizing the Value of Player Data], M. Seif El-Nasr, , A. Drachen, and , and A. Canossa, Eds., Springer London, London, 697–729 (2013).

Kaczetow, W.

J. L. Plass, B. D. Homer, C. K. Kinzer, Y. K. Chang, J. Frye, W. Kaczetow, K. Isbister, and K. Perlin, “Metrics in Simulations and Games for Learning,” [Game Analytics: Maximizing the Value of Player Data], M. Seif El-Nasr, , A. Drachen, and , and A. Canossa, Eds., Springer London, London, 697–729 (2013).

Kan, D.

C. Koh, H. S. Tan, K. C. Tan, L. Fang, F. M. Fong, D. Kan, S. L. Lye, and M. L. Wee, “Investigating the Effect of 3D Simulation Based Learning on the Motivation and Performance of Engineering Students,” J. Eng. Educ. 99(3), 237–251 (2010).
[Crossref]

Ke, F.

V. J. Shute and F. Ke, “Games, Learning, and Assessment,” [Assessment in Game-Based Learning: Foundations, Innovations, and Perspectives], D. Ifenthaler, D. Eseryel, and X. Ge, Eds., Springer New York, New York, NY, 43–58 (2012).

Khan, B.

B. Khan, [Managing E-Learning Strategies: Design, Delivery, Implementation and Evaluation], Information Science Publishing (2005).

Kim, Y. J.

Y. J. Kim, R. G. Almond, and V. J. Shute, “Applying Evidence-Centered Design for the Development of Game-Based Assessments in Physics Playground,” Int. J. Test. 16(2), 142–163 (2016).
[Crossref]

Kinzer, C. K.

J. L. Plass, B. D. Homer, C. K. Kinzer, Y. K. Chang, J. Frye, W. Kaczetow, K. Isbister, and K. Perlin, “Metrics in Simulations and Games for Learning,” [Game Analytics: Maximizing the Value of Player Data], M. Seif El-Nasr, , A. Drachen, and , and A. Canossa, Eds., Springer London, London, 697–729 (2013).

Klopfer, E.

E. Klopfer, J. Haas, S. Osterweil, and L. Rosenheck, [Resonant Games], The MIT Press (2018).

Koh, C.

C. Koh, H. S. Tan, K. C. Tan, L. Fang, F. M. Fong, D. Kan, S. L. Lye, and M. L. Wee, “Investigating the Effect of 3D Simulation Based Learning on the Motivation and Performance of Engineering Students,” J. Eng. Educ. 99(3), 237–251 (2010).
[Crossref]

Kowch, E.

E. Kowch, “New Capabilities for Cyber Charter School Leadership: An Emerging Imperative for Integrating Educational Technology and Educational Leadership Knowledge,” TechTrends Link. Res. Pract. Improve Learn. 53(4), 41–48 (2009).

Lin, H.-Y.

K.-E. Chang, Y.-L. Chen, H.-Y. Lin, and Y.-T. Sung, “Effects of learning support in simulation-based physics learning,” Comput. Educ. 51(4), 1486–1498 (2008).
[Crossref]

Lopes, S.

S. Agnisarman, A. Ponathil, S. Lopes, and K. Chalil Madathil, “An Empirical Study Investigating the Effectiveness of Integrating Anecdotal Patient Experiences into Healthcare Public Reports,” Proc. Hum”. Factors Ergon. Soc. Annu. Meet. 62(1), 533–537 (2018).
[Crossref]

Lye, S. L.

C. Koh, H. S. Tan, K. C. Tan, L. Fang, F. M. Fong, D. Kan, S. L. Lye, and M. L. Wee, “Investigating the Effect of 3D Simulation Based Learning on the Motivation and Performance of Engineering Students,” J. Eng. Educ. 99(3), 237–251 (2010).
[Crossref]

Moore, E. B.

E. B. Moore, J. M. Chamberlain, R. Parson, and K. K. Perkins, “PhET Interactive Simulations: Transformative Tools for Teaching Chemistry,” J. Chem. Educ. 91(8), 1191–1197 (2014).
[Crossref]

Osterweil, S.

E. Klopfer, J. Haas, S. Osterweil, and L. Rosenheck, [Resonant Games], The MIT Press (2018).

Parson, R.

E. B. Moore, J. M. Chamberlain, R. Parson, and K. K. Perkins, “PhET Interactive Simulations: Transformative Tools for Teaching Chemistry,” J. Chem. Educ. 91(8), 1191–1197 (2014).
[Crossref]

Paul, A.

A. Paul, N. Podolefsky, and K. Perkins, “Guiding without feeling guided: Implicit scaffolding through interactive simulation design,” AIP Conf. Proc. 1513(1), 302–305 (2013).
[Crossref]

Perkins, K.

A. Paul, N. Podolefsky, and K. Perkins, “Guiding without feeling guided: Implicit scaffolding through interactive simulation design,” AIP Conf. Proc. 1513(1), 302–305 (2013).
[Crossref]

Perkins, K. K.

E. B. Moore, J. M. Chamberlain, R. Parson, and K. K. Perkins, “PhET Interactive Simulations: Transformative Tools for Teaching Chemistry,” J. Chem. Educ. 91(8), 1191–1197 (2014).
[Crossref]

Perlin, K.

J. L. Plass, B. D. Homer, C. K. Kinzer, Y. K. Chang, J. Frye, W. Kaczetow, K. Isbister, and K. Perlin, “Metrics in Simulations and Games for Learning,” [Game Analytics: Maximizing the Value of Player Data], M. Seif El-Nasr, , A. Drachen, and , and A. Canossa, Eds., Springer London, London, 697–729 (2013).

Plass, J. L.

J. L. Plass, B. D. Homer, C. K. Kinzer, Y. K. Chang, J. Frye, W. Kaczetow, K. Isbister, and K. Perlin, “Metrics in Simulations and Games for Learning,” [Game Analytics: Maximizing the Value of Player Data], M. Seif El-Nasr, , A. Drachen, and , and A. Canossa, Eds., Springer London, London, 697–729 (2013).

Podolefsky, N.

A. Paul, N. Podolefsky, and K. Perkins, “Guiding without feeling guided: Implicit scaffolding through interactive simulation design,” AIP Conf. Proc. 1513(1), 302–305 (2013).
[Crossref]

Ponathil, A.

S. Agnisarman, A. Ponathil, S. Lopes, and K. Chalil Madathil, “An Empirical Study Investigating the Effectiveness of Integrating Anecdotal Patient Experiences into Healthcare Public Reports,” Proc. Hum”. Factors Ergon. Soc. Annu. Meet. 62(1), 533–537 (2018).
[Crossref]

Rosenheck, L.

E. Klopfer, J. Haas, S. Osterweil, and L. Rosenheck, [Resonant Games], The MIT Press (2018).

Sahin, I.

I. Sahin and M. Shelley, “Considering Students’ Perceptions: The Distance Education Student Satisfaction Model,” J. Educ. Technol. Soc. 11(3), 216–223 (2008).

Shelley, M.

I. Sahin and M. Shelley, “Considering Students’ Perceptions: The Distance Education Student Satisfaction Model,” J. Educ. Technol. Soc. 11(3), 216–223 (2008).

Shute, V. J.

Y. J. Kim, R. G. Almond, and V. J. Shute, “Applying Evidence-Centered Design for the Development of Game-Based Assessments in Physics Playground,” Int. J. Test. 16(2), 142–163 (2016).
[Crossref]

V. J. Shute and F. Ke, “Games, Learning, and Assessment,” [Assessment in Game-Based Learning: Foundations, Innovations, and Perspectives], D. Ifenthaler, D. Eseryel, and X. Ge, Eds., Springer New York, New York, NY, 43–58 (2012).

Squire, K.

K. Squire, M. Barnett, J. M. Grant, and T. Higginbotham, “Electromagnetism Supercharged! Learning Physics with Digital Simulation Games,” 8.

Sung, Y.-T.

K.-E. Chang, Y.-L. Chen, H.-Y. Lin, and Y.-T. Sung, “Effects of learning support in simulation-based physics learning,” Comput. Educ. 51(4), 1486–1498 (2008).
[Crossref]

Tan, H. S.

C. Koh, H. S. Tan, K. C. Tan, L. Fang, F. M. Fong, D. Kan, S. L. Lye, and M. L. Wee, “Investigating the Effect of 3D Simulation Based Learning on the Motivation and Performance of Engineering Students,” J. Eng. Educ. 99(3), 237–251 (2010).
[Crossref]

Tan, K. C.

C. Koh, H. S. Tan, K. C. Tan, L. Fang, F. M. Fong, D. Kan, S. L. Lye, and M. L. Wee, “Investigating the Effect of 3D Simulation Based Learning on the Motivation and Performance of Engineering Students,” J. Eng. Educ. 99(3), 237–251 (2010).
[Crossref]

Wee, M. L.

C. Koh, H. S. Tan, K. C. Tan, L. Fang, F. M. Fong, D. Kan, S. L. Lye, and M. L. Wee, “Investigating the Effect of 3D Simulation Based Learning on the Motivation and Performance of Engineering Students,” J. Eng. Educ. 99(3), 237–251 (2010).
[Crossref]

Wu, L. Y.

K. K. Bhagat, L. Y. Wu, and C.-Y. Chang, “Development and validation of the perception of students towards online learning (POSTOL),” Educ. Technol. Soc. 19(1), 350–359 (2016).

AIP Conf. Proc. (1)

A. Paul, N. Podolefsky, and K. Perkins, “Guiding without feeling guided: Implicit scaffolding through interactive simulation design,” AIP Conf. Proc. 1513(1), 302–305 (2013).
[Crossref]

Comput. Educ. (1)

K.-E. Chang, Y.-L. Chen, H.-Y. Lin, and Y.-T. Sung, “Effects of learning support in simulation-based physics learning,” Comput. Educ. 51(4), 1486–1498 (2008).
[Crossref]

Educ. Technol. Soc. (1)

K. K. Bhagat, L. Y. Wu, and C.-Y. Chang, “Development and validation of the perception of students towards online learning (POSTOL),” Educ. Technol. Soc. 19(1), 350–359 (2016).

Factors Ergon. Soc. Annu. Meet. (1)

S. Agnisarman, A. Ponathil, S. Lopes, and K. Chalil Madathil, “An Empirical Study Investigating the Effectiveness of Integrating Anecdotal Patient Experiences into Healthcare Public Reports,” Proc. Hum”. Factors Ergon. Soc. Annu. Meet. 62(1), 533–537 (2018).
[Crossref]

Int. J. Test. (1)

Y. J. Kim, R. G. Almond, and V. J. Shute, “Applying Evidence-Centered Design for the Development of Game-Based Assessments in Physics Playground,” Int. J. Test. 16(2), 142–163 (2016).
[Crossref]

J. Chem. Educ. (1)

E. B. Moore, J. M. Chamberlain, R. Parson, and K. K. Perkins, “PhET Interactive Simulations: Transformative Tools for Teaching Chemistry,” J. Chem. Educ. 91(8), 1191–1197 (2014).
[Crossref]

J. Educ. Technol. Soc. (1)

I. Sahin and M. Shelley, “Considering Students’ Perceptions: The Distance Education Student Satisfaction Model,” J. Educ. Technol. Soc. 11(3), 216–223 (2008).

J. Eng. Educ. (1)

C. Koh, H. S. Tan, K. C. Tan, L. Fang, F. M. Fong, D. Kan, S. L. Lye, and M. L. Wee, “Investigating the Effect of 3D Simulation Based Learning on the Motivation and Performance of Engineering Students,” J. Eng. Educ. 99(3), 237–251 (2010).
[Crossref]

TechTrends Link. Res. Pract. Improve Learn. (1)

E. Kowch, “New Capabilities for Cyber Charter School Leadership: An Emerging Imperative for Integrating Educational Technology and Educational Leadership Knowledge,” TechTrends Link. Res. Pract. Improve Learn. 53(4), 41–48 (2009).

Other (11)

A. Rossett, ed., [The ASTD E-Learning Handbook: Best Practices, Strategies, and Case Studies for an Emerging Field], McGraw-Hill Trade (2002).

K. Squire, M. Barnett, J. M. Grant, and T. Higginbotham, “Electromagnetism Supercharged! Learning Physics with Digital Simulation Games,” 8.

J. Voogt and G. Knezek, eds., [International Handbook of Information Technology in Primary and Secondary Education], Springer US (2008).

“Roadmap | AIM Photonics Academy.”, https://aimphotonics.academy/roadmap (1 May 2019 ).

MarketsandMarkets, “Silicon Photonics Market by Product (Transceiver, Switch, Variable Optical Attenuator, Cable, Sensor), Application (Data Center, Telecommunications, Military Defense, Medical and Life Sciences, Sensing), Component, and Geography - Global Forecast to 2023” (2018).

B. Khan, [Managing E-Learning Strategies: Design, Delivery, Implementation and Evaluation], Information Science Publishing (2005).

J. L. Plass, B. D. Homer, C. K. Kinzer, Y. K. Chang, J. Frye, W. Kaczetow, K. Isbister, and K. Perlin, “Metrics in Simulations and Games for Learning,” [Game Analytics: Maximizing the Value of Player Data], M. Seif El-Nasr, , A. Drachen, and , and A. Canossa, Eds., Springer London, London, 697–729 (2013).

E. Klopfer, J. Haas, S. Osterweil, and L. Rosenheck, [Resonant Games], The MIT Press (2018).

Lumerical Inc., “FDTD Solutions: Making a CW movie,” https://kb.lumerical.com/layout_analysis_cw_movie.html (1 May 2019 ).

AIM Photonics Academy / MITx., “Photonic Integrated Circuits 1,” edX, 31 August 2018, https://www.edx.org/course/photonic-integrated-circuits (1 May 2019).

V. J. Shute and F. Ke, “Games, Learning, and Assessment,” [Assessment in Game-Based Learning: Foundations, Innovations, and Perspectives], D. Ifenthaler, D. Eseryel, and X. Ge, Eds., Springer New York, New York, NY, 43–58 (2012).