Two-dimensional van der Waals materials are two-dimensional crystals with strong covalent in-plane bonds and weak van der Waals interaction between the layers with a variety of different electronic, optical and mechanical properties. A very prominent class of two-dimensional materials are transition metal dichalcogenides and amongst them particularly the semiconducting subclass. Their properties include bandgaps in the near-infrared to the visible range and a decent charge carrier mobility. These characteristics make the materials highly attractive for both fundamental research as well as innovative device applications. For most 2D semiconductor devices, one of the largest challenges is to prepare low resistance contacts. That holds particularly for optoelectronic devices to avoid depletion fields at Schottky barriers. In general, a combination of a top contact and edge contact is used to describe the morphology of contacts to 2D materials [1]. The top contact is either formed by a van der Waals gap between a metal and the 2D semiconductor or by the creation of covalent bonds to the 2D semiconductor, leading to a metallization of the contact region. Best contacts so far have been achieved by inducing a metallic phase transition within the 2D semiconductors, e.g. via a phase transition from 2H to 1T in MoS2 FETs [2] or by using graphene as contact material [3,4].

© 2017 IEEE

PDF Article
More Like This
2D Semiconductor Optoelectronics

Ali Javey
NoTu1C.2 Novel Optical Materials and Applications (NOMA) 2017

Tracking exciton-trion interplay in the transient optical properties of WS2 inks

Eva A. A. Pogna, Christoph Gadermaier, Antonio E. Del Rio Castillo, Giulio Cerullo, and Francesco Bonaccorso
EI_3_3 European Quantum Electronics Conference (EQEC) 2017

2D Materials-based Optoelectronic Devices

Kazi Islam, Tim Ismael, Ron Synowicki, and Matthew Escarra
PvTu3G.3 Optical Devices and Materials for Solar Energy and Solid-state Lighting (PVLED) 2020


You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription