Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

A near-infrared hyperspectral imaging system for quantitative monitoring of hemodynamics and metabolism on the exposed cortex of mice

Not Accessible

Your library or personal account may give you access

Abstract

A near-infrared (NIR) hyperspectral imaging (HSI) system has been developed to measure the hemodynamic (changes in concentration of oxyhemoglobin and deoxyhemoglobin) and the metabolic (changes in concentration of oxidised cytochrome-c-oxidase) responses in the exposed cortex of small animals. Using the extended spectral information of multiple wavelengths in the NIR range between 780 and 900 nm optimal differentiation between the optical signatures of the chromophores (hemoglobin and cytochrome-c-oxidase) can be achieved. The system, called hNIR, is composed of: (1) a high-frame rate, large-format scientific CMOS (sCMOS) camera for image acquisition and (2) a broadband source coupled with a Pellin-Broca prism mounted on a rotating motor for sequential, fast-rate illumination of the target at different spectral bands. The system characterisation highlights the capability of the setup to achieve high spatial resolution over a ~1x1 mm field of view (FOV). Hyperspectral data analysis also includes simulations using a Monte Carlo optical model of HSI, to estimate the average photon pathlength and improve image reconstruction and quantification. The hNIR system described here is an improvement over a previously tested commercial snapshot HSI solution both in terms of spatial resolution and signal-to-noise ratio (SNR). This setup will be used to monitor brain hemodynamic and metabolic changes in the exposed cortex of mice during systemic oxygenation changes.

© 2019 SPIE/OSA

PDF Article
More Like This
hNIR: a hyperspectral imaging system for mapping changes in haemoglobin and cytochrome-c-oxidase on the exposed cerebral cortex of mice

Luca Giannoni, Frédéric Lange, Marija Sajic, Kenneth J. Smith, and Ilias Tachtsidis
BW3B.5 Optics and the Brain (BRAIN) 2021

A new multichannel broadband NIRS system for quantitative monitoring of brain hemodynamics and metabolism during seizures

Isabel De Roever, Aikaterini Vezyroglou, Peter Hebden, Rachel Thorton, Alan Worley, Mariana Alves, Emma Dean, Gemma Bale, Paola Pinti, J. Helen Cross, and Ilias Tachtsidis
11074_5 European Conference on Biomedical Optics (ECBO) 2019

Optical Imaging of Hemodynamic Changes in Exposed Cortex of Awake Mice

Takahiro Kikuchi, Masashi Kusano, Hiroyuki Takuwa, Kazuto Masamoto, Iwao Kanno, and Eiji Okada
BTu3A.56 Biomedical Optics (BIOMED) 2012

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.