Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Diffuse Optical Imaging IV
  • SPIE Proceedings (Optica Publishing Group, 2013),
  • paper 879909

Information-theoretic method for wavelength selection in bioluminescence tomography

Not Accessible

Your library or personal account may give you access

Abstract

Practical imaging constraints restrict the number of wavelengths that can be measured in a single Bioluminescence Tomography imaging session, but it is unclear which set of measurement wavelengths is optimal, in the sense of providing the most information about the bioluminescent source. Mutual Information was used to integrate knowledge of the type of bioluminescent source likely to be present, the optical properties of tissue and physics of light propagation, and the noise characteristics of the imaging system, in order to quantify the information contained in measurements at different sets of wavelengths. The approach was applied to a two-dimensional simulation of Bioluminescence Tomography imaging of a mouse, and the results indicate that different wavelengths and sets of wavelengths contain different amounts of information. When imaging at a single wavelength, 580nm was found to be optimal, and when imaging at two wavelengths, 570nm and 580nm were found to be optimal. Examination of the dispersion of the posterior distributions for single wavelengths suggests that information regarding the location of the centre of the bioluminescence distribution is relatively independent of wavelength, whilst information regarding the width of the bioluminescence distribution is relatively wavelength specific.

© 2013 SPIE

PDF Article
More Like This
Bioluminescence Tomography Improves Quantitative Accuracy for Pre-Clinical Imaging

James A. Guggenheim, Hector R. A. Basevi, Iain B. Styles, Jon Frampton, and Hamid Dehghani
87990G European Conference on Biomedical Optics (ECBO) 2013

Random Matrix-based Dimensionality Reduction for Bioluminescence Tomography Reconstruction

Iain B. Styles, Hector R.A. Basevi, James A. Guggenheim, and Hamid Dehghani
87990J European Conference on Biomedical Optics (ECBO) 2013

Towards Bayesian Reconstruction and Analysis in Bioluminescence Tomography via Markov Chain Monte Carlo Techniques

H.R.A. Basevi, J.A. Guggenheim, S.L. Taylor, H. Dehghani, and I.B. Styles
BM3A.45 Biomedical Optics (BIOMED) 2014

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.