Laser light is nowadays routinely used in the aesthetic treatments of facial skin, such as in laser rejuvenation, scar removal etc. The induced thermal damage may be varied by setting different laser parameters, in order to obtain a particular aesthetic result. In this work, it is proposed a theoretical study on the induced thermal damage in the deep tissue, by considering different laser pulse duration. The study is based on the Finite Element Method (FEM): a bidimensional model of the facial skin is depicted in axial symmetry, considering the different skin structures and their different optical and thermal parameters; the conversion of laser light into thermal energy is modeled by the bio-heat equation. The light source is a CO2 laser, with different pulse durations. The model enabled to study the thermal damage induced into the skin, by calculating the Arrhenius integral. The post-processing results enabled to study in space and time the temperature dynamics induced in the facial skin, to study the eventual cumulative effects of subsequent laser pulses and to optimize the procedure for applications in dermatological surgery. The calculated data where then validated in an experimental measurement session, performed in a sheep animal model. Histological analyses were performed on the treated tissues, evidencing the spatial distribution and the entity of the thermal damage in the collageneous tissue. Modeling and experimental results were in good agreement, and they were used to design a new optimized laser based skin resurfacing procedure.

© 2011 OSA/SPIE

PDF Article
More Like This
High power, diode-pumped Er:YAG lasers for soft and hard tissue applications

A. Heinrich, C. Hagen, A. Vizhanyo, P. Krammer, S. Summer, S. Gross, C. Böhler, and T. Bragagna
80921C European Conference on Biomedical Optics (ECBO) 2011

Computational Evaluation of Ethnic Differences in Photothermal Damage induced by Laser Skin Treatments

Yu SHIMOJO, Takahiro NISHIMURA, Hisanao HAZAMA, Toshiyuki OZAWA, and Kunio AWAZU
JTu3A.1 Clinical and Translational Biophotonics (Translational) 2020

In silico Evaluation of Thermal Skin Damage Caused by Picosecond Laser Irradiation

Yu SHIMOJO, Takahiro NISHIMURA, Hisanao HAZAMA, Nobuhiro ITO, and Kunio AWAZU
DS1A.7 Bio-Optics: Design and Application (BODA) 2019


You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
Login to access OSA Member Subscription