Abstract

We model the photocurrent of a depth-scan (A-scan) from an optical coherence tomography (OCT) system, using a linearly polarized thermal source, as an electronically filtered doubly-stochastic Poisson process, and we obtain its time-varying second-order statistics. We derive an expression for the instantaneous signal-to-noise ratio (SNR) of time-domain OCT which is more general than the previously reported time-averaged expressions. Unlike previous work, our analysis combines shot noise, due to detection of coherent light, and photon excess noise, due to fluctuations in the optical field, into a single noise source that we refer to as the photoelectron noise. Similar to previous results, our SNR is dominated by a term similar to shot-noise when the reference optical power is low and by a term similar to photon excess noise when the reference power is high.

© 2005 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription