Abstract

Digital holographic microscopy allows a single-shot label-free imaging of living microscopic objects using a low intensity laser. Using reconstructed quantitative phase as an input to a convolutional neural network, detection of tumorigenic samples is possible.

© 2018 The Author(s)

PDF Article
More Like This
Temporal deep learning classification of digital hologram reconstructions of multicellular samples

Tomi Pitkäaho, Aki Manninen, and Thomas J. Naughton
JW3A.14 Clinical and Translational Biophotonics (Translational) 2018

Focus classification in digital holographic microscopy using deep convolutional neural networks

Tomi Pitkäaho, Aki Manninen, and Thomas J. Naughton
104140K European Conference on Biomedical Optics (ECBO) 2017

Digital hologram reconstruction segmentation using a convolutional neural network

Tomi Pitkäaho, Aki Manninen, and Thomas J. Naughton
Th3A.1 Digital Holography and Three-Dimensional Imaging (DH) 2019

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription