Abstract

Single quantum emitters offer useful functionalities for quantum optics, but measurements of their properties are time-consuming. We demonstrate that machine learning dramatically reduces data collection time (1s), increasing the accuracy of second-order autocorrelation measurements (>90%).

© 2020 The Author(s)

PDF Article  |   Presentation Video
More Like This
Machine Learning Assisted Quantum Photonics

Zhaxylyk Kudyshev, Simeon Bogdanov, Theodor Isacsson, Alexander V. Kildishev, Alexandra Boltasseva, and Vladimir M. Shalaev
QM6B.3 Quantum 2.0 (QUANTUM) 2020

Imaging-free object classification under photon-limited detection via machine learning with simulated training data

Jianhong Shi, Yan Zhu, Xiaoyan Wu, and Guihua Zeng
JTh2A.36 3D Image Acquisition and Display: Technology, Perception and Applications (3D) 2020

Machine Learning in Quantum Communication

Max Rückmann, Sebastian Kleis, Christian G. Schaeffer, and Darko Zibar
SpTu3I.6 Signal Processing in Photonic Communications (SPPCom) 2020

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Presentation Video

Presentation video access is available to:

  1. OSA Publishing subscribers
  2. Technical meeting attendees
  3. OSA members who wish to use one of their free downloads. Please download the article first. After downloading, please refresh this page.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription or free downloads


More Like This
Machine Learning Assisted Quantum Photonics

Zhaxylyk Kudyshev, Simeon Bogdanov, Theodor Isacsson, Alexander V. Kildishev, Alexandra Boltasseva, and Vladimir M. Shalaev
QM6B.3 Quantum 2.0 (QUANTUM) 2020

Imaging-free object classification under photon-limited detection via machine learning with simulated training data

Jianhong Shi, Yan Zhu, Xiaoyan Wu, and Guihua Zeng
JTh2A.36 3D Image Acquisition and Display: Technology, Perception and Applications (3D) 2020

Machine Learning in Quantum Communication

Max Rückmann, Sebastian Kleis, Christian G. Schaeffer, and Darko Zibar
SpTu3I.6 Signal Processing in Photonic Communications (SPPCom) 2020